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INTRODUCTION 

The long-term goal of our research is to develop computer-aided diagnosis (CAD) techniques to 

improve the detection and diagnosis of breast cancer. The hypothesis to be tested in the present project 

is that radiologists' ability to differentiate malignant from benign breast lesions can be improved by 

integrating radiologists' perceptual expertise in the interpretation of mammograms with the advantages 

of automated computer classification. This project has three SOW Tasks: 

Task 1.   To combine radiologist-extracted Breast Imaging Reporting and Data System (BI-RADS) 

features with image features extracted by a computer to classify malignant and benign 

clustered microcalcifications in mammograms. 

Task 2.   To optimally combine radiologists' diagnosis with the result of computer classification. 

Task 3.   To optimize computer classification for full-field digital mammograms. 

BODY 

1.      Combination of BI-RADS features and computer-extracted image features for computer 

classification of malignant and benign breast lesions 

This particular work is within the scope of SOW Task 1. We have continued from what was 

reported in the last report to work on the investigation of BI-RADS lesion descriptors for computer- 

aided diagnosis of malignant and benign breast lesions in mammograms. We have used the database 

assembled earlier and have now completed the study of three expert mammography specialists reading 

the mammograms. In the experiment, the radiologists read the standard view and magnification view 

screen-film mammograms that contain suspicious lesions. Original film mammograms were used in the 

study to simulate clinical practice. The radiologists then provided standard BI-RADS lesion 

descriptions and BI-RADS final assessments for each lesion. These lesion descriptors provided by the 

radiologists were then used as supplemental inputs to our computer technique that was based on 

computer-extracted image features, to determine the effect of the BI-RADS lesion descriptors on 

improving the computer performance. We have found that combining the BI-RADS lesion descriptors 

and computer-extracted image features tend to improve computer classification performance. For 
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example, For calcifications, the A^ value for the computer performance increased from 0.73 based on 

computer-extracted image features alone to 0.75,0.81, and 0.84 based on a combination of the 

computer-extracted image features and a radiologist-provided BI-RADS descriptors, depending on the 

particular radiologist. However, we have observed substantial variability in the Bi-RADS descriptors 

provided by different radiologists. If we train the computer technique on one radiologist's data and then 

present the computer technique with another radiologist's data, the improvement in the computer 

performance from the addition of BI-RADS lesion descriptors diminishes. In one experiment, the 

average A^ value was 0.75 compared to 0.80 if the computer was fed with data from the same 

radiologist. This finding is important because it provides some insight into an apparent paradox that the 

BI-RADS, while supposed to help improve mammography interpretation, has been met with mixed 

results: It may be that BI-RADS is helpful for computer-aided diagnosis but reader variability 

diminishes this positive effect. Some of this research has been presented at various meetings, including 

the RSNA [1] and the Army Era of Hope Conference in 2002 [2]. The new results on the effect of 

reader variability will be presented at the 2004 SPIE Medical Imaging Conference, and we plan to 

prepare a manuscript for peer-reviewed publication. 

Last year we reported on the development of a computer technique for predicting the BI-RADS 

lesion descriptors that would be selected by a radiologist. The goals are to help streamlining 

radiologists' reporting on mammogram interpretation by suggesting a detailed draft report, and to help 

improve the computer classification performance by providing BI-RADS lesion descriptors without 

requiring a radiologist to do so. We have made further refinement of the method. However, a major 

challenge for this work is the lack of a "gold standard" for the BI-RADS lesion descriptors that a 

radiologist would select. BI-RADS lesion descriptors are subjective and descriptive in nature; a "gold 

standard" for it is neither completely meaningful, nor can be practically assigned. However, its lack 

thereof presents fundamental problems to the training of our computer classifiers and to the evaluation 

of same computer classifiers. Given the observation of reader variability in providing BI-RADS lesion 

descriptors, this challenge is probably difficult to overcome. This work was presented in part at the 

2003 SPIE Medical Imaging Conference [3]. 



2.      An analytical comparison of four methods for combining multiple sources of diagnostic 

information 

This particular work is within the scope of SOW Task 2. Computer-aided diagnosis (CAD) 

methods often analyze each view of a mammogram separately, even for multiple images of the same 

patient such as the mediolateral oblique and craniocaudal views in mammography [4]. This approach 

helps simplify the computer technique and generally makes that technique more reliable. However, 

there is often a need to combine these analyses of multiple images of the same patient to render a result 

that is clinically relevant. We are investigating several simple methods that have been used in CAD 

techniques, such as taking the simple average, or taking the result of the one image that is the most 

indicative of a disease outcome (e.g., maUgnancy) [4, 5]. We have performed an analytical analysis 

based on the binormal model for receiver operating characteristic (ROC) analysis with two simplifying 

assumptions. One assumption is that diagnostic information derived from the multiple images can be 

described by the same binormal ROC curve; the second assumptions is that the diagnostic information 

derived from the multiple images is uncorrelated. We have found that the method of simple average 

always produces an improved ROC curve over the individual image. However, the method of taking the 

result of the one image that is the most indicative of malignancy and even the method of taking the 

result of the one image that is the least indicative of malignancy can also improve the ROC curve and, 

under certain conditions, even outperform the method of simple average to become the preferred 

method. Based on this analysis, we are able to identify the most appropriate choice of method given the 

binormal ROC curve parameters. These findings are expected to help improve various CAD methods. 

This work was presented at the Medical Image Perception Society Conference X and will be presented 

at the RSNA in 2003 [6, 7]. We will also submit a manuscript of this work for peer-reviewed 

publication shortly. We are currently generalizing this research by considering correlation in the 

diagnostic information derived from the multiple images and by considering the situation in which the 

diagnostic information derived from the multiple images must be described by different ROC curves. 



3. Analysis of the influence of radiologist input on the performance of computer classification 

of malignant and benign calcifications 

This particular work is within the scope of SOW Task 3. Previously, in developing a computer 

technique to classify calcifications in mammograms as malignant or benign, we manually indicated the 

location of all individual calcifications to the computer and found that the computer can be more 

accurate than radiologists [4, 8]. In this study, we investigated whether radiologists can be asked to 

provide minimal input to the computer and obtain consistent computer classification results. 

Radiologists were instructed to draw a rectangle that encloses all calcifications, and indicate an 

approximate number of the calcifications (either <6, 6-10,10-30, or >30). The computer then used 

these two pieces of information to detect the individual calcifications and, subsequently, classify the 

calcifications as malignant or benign based on only those calcifications detected by the computer [9]. 

We showed at the 2002 RSNA conference in an Educational Exhibit 18 cases of digitized mammograms 

on a computer monitor together with standard and magnification view film mammograms to 38 self- 

reported breast-imaging radiologists (12 of whom read all 18 cases) [10]. The standard deviation in the 

location of their rectangles (averaged over all cases) was approximated 3 mm, the standard deviation in 

the linear dimension of the rectangles was 6 mm, and the standard deviation in the computer-estimated 

likelihood of malignancy was 17%. These results indicate that it is possible to carry out computer 

classification on the basis of radiologists' minimal input. This work was presented at the 2003 SPIE 

Medical Imaging Conference [11] and it formed an important basis for our research on full-field digital 

mammograms described next. 

4. Computer-aided diagnosis of malignant and benign calcifications in full-field digital 

mammograms 

This particular work is within the scope of SOW Task 3. Previously we have developed a 

computer-aided diagnosis technique to classify breast calcifications as malignant or benign for use on 

film screen mammograms in which we must identify individual calcifications manually. We have now 

performed a study to evaluate this technique on full-field digital mammograms. This study represents a 

totally independent test of the algorithm developed for film screen calcifications on a new, full-field 

digital mammogram database, with automatic detection of the calcifications by the computer aid. We 



analyzed 49 consecutive full-field digital mammograms (29 cancers) showing suspicious calcifications 

that were biopsied between May 2002 and May 2003 at the University of Chicago. Four mammography 

specialists read the images retrospectively on a monitor in random order and electronically marked the 

region of calcifications in each image by making a box around the group. The computer then 

automatically detected calcifications within the box and analyzed 8 features of calcification morphology 

and distribution to arrive at an estimate of the likelihood of malignancy. The radiologists entered BI- 

RADS assessments before and after seeing the computer calculation. Despite variability in input from 

the radiologists (region selection), the computer achieved consistently high performance with ROC 

curve areas of 0.80,0.80,0.78, and 0.77 (not statistically different). In addition, the average ROC curve 

area of the unaided observers increased from 0.72 to 0.76 with the computer aid (not statistically 

significant for the number of cases and observers). Previous testing on film screen mammograms 

showed the computer aid was able to achieve virtually the same ROC curve area (0.80) as on the digital 

images and was able to improve radiologists' performance significantly. We conclude from this study 

that our computer technique can achieve consistently high performance in classifying malignant and 

benign calcifications in digital mammograms. The consistency and reliability of this technique is 

important because it was developed on film images and tested on digital images, without modification. 

This test simulated clinical use of the technique by including variation in reader input, while 

demonstrating consistent computer calculation. We have submitted an abstract to the 2004 American 

Roentgen Ray Society Annual Meeting and we are in the process of preparing a manuscript on this work 

for peer-reviewed publication. 

5.      A new method for training artiHcial neural networks to approximate the ideal observer 

This particular work is beyond but related to SOW Task 3. We have continued working on the 

investigation of some basic properties of artificial neural networks, which we employ in our computer- 

aided diagnosis methods for malignant and benign breast lesions [8]. While this is not an original Task 

of the Army program, we are excited about this project and have devoted some effort into it. Insights 

gained from this project will be used to improve our computer-aided diagnosis technique. We report 

one significant finding. Artificial neural networks (ANNs) are frequently used in computer-aided 

diagnosis methods. Generally they are to approximate the ideal observer for some specific classification 



task. This is possible given large enough training data. However, unlike the ideal observer, the ANN is 

not given the full joint probability density function. Instead, it is given the association of a set of 

training data (input vectors) with one classification outcome, and the association of a second set of 

training data with a second classification outcome. Often, the ANN is able to approximate the ideal- 

observer performance; therefore indicating it is able to estimate the full joint probability density function 

from the information of the training cases. We have developed a method that provides more information 

to the ANN to help it better approximate the ideal observer. Instead of providing a binary class 

association for the training data, we provide multiple rank-ordered associations of the training data to 

classification outcomes. In the extreme of infinite number of such associations, the information 

provided becomes the posterior probability. For practical implementation, the information provided 

may be based on, e.g., size or histological grades of tumor when the classification task is to differentiate 

malignant and benign lesions. The benefits are less statistical variation in the ANN output and better 

approximation of the ideal observer with limited training data. This work was presented at SPIE 

Medical Imaging 2003 [12], the 45* Annual Meeting of the AAPM [13], and Medical Image Perception 

Conference X [14]. We are in the process of preparing a manuscript of this work for peer-reviewed 

publication. 

KEY RESEARCH ACCOMPLISHMENTS 

• Determined that the combination of BI-RADS lesion descriptors provided by radiologists and image 

features extracted by a computer can improve the performance of computer classification of 

malignant and benign breast lesions in mammograms, but reader variability in providing the BI- 

RADS lesion descriptors can diminish that improvement. 

• Demonstrated that the method of choice for simple un-weighted linear combinations of diagnostic 

information derived from multiple sources such as multiple images of the same patient is not always a 

single method but will change from one method to another depending on the ROC curve parameters 

of the diagnostic information derived from each single source. 

• Determined that variability in certain minimal information provided by radiologists is reasonably 

small in querying our computer-aided diagnosis technique about calcifications in mammograms and 



that the resulting variabiUty in computer-calculated likelihood of malignancy for the calcifications is 

also reasonably small. 

• Demonstrated that our computer-aided diagnosis technique for malignant and benign calcifications in 

mammograms developed on digitized screen-film mammograms that required manual identification 

of individual calcifications can achieve virtually the same highly accurate and highly consistent 

performance on full-field digital mammograms, being tested on an independent new database without 

re-tuning the technique and no-longer requiring manual identification of the individual calcifications. 

• Developed a novel technique for training artificial neural networks to better approximate the ideal 

observer in two-class classification tasks by using multiple training target values instead of the 

conventional binary training target values. 

REPORTABLE OUTCOMES 

Manuscripts 

1. Jiang Y. Uncertainty in the output of artificial neural networks. IEEE Trans Med Imaging 22:913- 

921,2003. 

2. Salfity MF, Nishikawa RM, Jiang Y, Papaioannou J. The use of a priori information in the 

detection of mammographic microcalcifications to improve their classification. Med Phys 30:823- 

831,2003. 

3. Vyborny CJ, Kukec C, Jiang Y, Doi K. Experience with computer-aided detection in a low-volume 

mammography clinic. In: Digital Mammography 2002 (Peitgen HO, eds.). Heidelberg: Springer 

Verlag Publishers, pp. 387-390, 2002. 

4. Salfity MF, Nishikawa RM, Jiang Y, Papaioannou J. Improvement in the automatic detection of 

individual microcalcifications to integrate a cluster-detection and a cluster-classification schemes. 

In: Digital Mammography 2002 (Peitgen HO, eds.). Heidelberg: Springer Verlag Publishers, pp. 

411-413,2002. 

5. Jiang Y, Salfity MF, Chen V, Nishikawa RM, Papaioannou J, Edwards AV, Paquerault S. Effect of 

radiologists' variability on the performance of computer classification of malignant and benign 

calcifications in mammograms. Proc SPIE 5034:42-47, 2003. 
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6. Liu B, Jiang Y. Training artificial neural networks (ANNs) with multiple target values to reduce 

output uncertainty. Proc SPIE 5034:433-438,2003. 

7. Paquerault S, Jiang Y, Nishikawa RM, Schmidt RA, D'Orsi CJ, Vybomy CJ. Automated selection 

of BI-RADS lesion descriptors for reporting calcifications in mammograms. Proc SPIE 5032:802- 

809,2003. 

8. Freedman M, Lo S-CB, Osicka T, Zhao H, Lure F, Xu X, Lin J, Zhang R, Jiang Y. Enhanced 

computer aided detection of lung cancer on chest radiographs with the Deus Technologies RS- 

2000. In: CAR'02 Computer Assisted Radiology and Surgery (Lemke HU, Vannier MW, Inamura 

K, eds.). Amsterdam: Elsevier, 2002. 

Abstracts 

9. Jiang Y, M. NR, Giger ML, Papaioannou J, Lan L, Vybomy CJ, et al. On-line demonstration of 

computer-aided diagnosis (CAD) of mahgnant and benign breast lesions (abstract: educational 

exhibit). Radiology 225(P):683, 2002. Presented at the 88* Scientific Assembly and Annual 

Meeting of the Radiological Society of North America (RSNA). 

10. Liu B, Jiang Y. Training artificial neural networks (ANNs) with multiple target values for two- 

class classification problems (abstract). Medical Physics 30:2003. Presented at the 45* Annual 

Meeting of the American Association of Physicists in Medicine (AAPM). 

11. Paquerault S, Jiang Y, Yarusso LM, Papaioannou J, Nishikawa RM. Potential improvement in 

computerized classification of malignant mammographic clustered microcalcifications using a 

novel segmentation method (abstract). Medical Physics 30:2003. Presented at the 45* Annual 

Meeting of the American Association of Physicists in Medicine (AAPM). 

Presentations 

12. Jiang Y, Liu B. Training artificial neural network with multiple target values to approximate the 

ideal observer. Presented at Medical Image Perception Conference X, Durham, NC, September, 

2003. 

13. Liu B, Metz CE, Jiang Y. Proper use of multiple images of the same patient in computer-aided 

diagnosis (CAD) based on considerations of ROC analysis. Presented at Medical Image Perception 

Conference X, Durham, NC, September, 2003. 
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14. Zur R, Jiang Y. Obtaining ideal observer Az value by training ANNs with jitter. Presented at 

Medical Image Perception Conference X, Durham, NC, September, 2003. 

15. Jiang Y, Nishikawa RM, Schmidt RA, Toledano AY, Doi K, Beiden SV, Wagner RF, Campbell G, 

Metz CE. The Potential of Computer-Aided Diagnosis (CAD) to Reduce Variability in 

Radiologists' Interpretation of Mammograms. Presented at Biomedical Imaging Research 

Opportunities Workshop (BIROW), Washington DC, January 2003. 

CONCLUSIONS 

We have made significant progress toward completing all three SOW Tasks. Tasks 1 and 2 are 

near completion and we will concentrate on preparing publications. Task 3 is partially completed; we 

will further improve and test our computer classification technique on full-field digital mammograms 

and will work on preparing publications. The results support project continuation. 
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Uncertainty in the Output of Artificial Neural 
Networks 

Yulei Jiang 

Abstract—Analysis of the performance of artificial neural net- 
works (ANNs) is usually based on aggregate results on a popula- 
tion of cases. In this paper, we analyze ANN output corresponding 
to the individual case. We show variability in the outputs of mul- 
tiple ANNs that are trained and "optimized" from a common set of 
training cases. We predict this variability from a theoretical stand- 
point on the basis that multiple ANNs can be optunized to achieve 
similar overall performance on a population of cases, but produce 
different outputs for the same individual case because the ANNs 
use different weights. We use simulations to show that the average 
standard deviation in the ANN output can be two orders of magni- 
tude higher than the standard deviation in the ANN overall perfor- 
mance measured by the A^ value. We further show this variability 
using an example in mammography where the ANNs are used to 
classify clustered microcalcifications as malignant or benign based 
on image features extracted from mammograms. This variability 
m the ANN output is generally not recognized because a trained in- 
dividual ANN becomes a deterministic model. Recognition of this 
variability and the deterministic view of the ANN present a fun- 
damental contradiction. The implication of this variability to the 
classification task warrants additional study. 

Index Terms—Artificial neural networks, classification, com- 
puter-aided diagnosis, estimation uncertamty, prediction error. 

I. INTRODUCTION 

ARTIFICIAL neural networks (ANNs) are frequently used 
to perform classification tasks in medical imaging appli- 

cations, e.g., computer-aided diagnosis (CAD) [1], [2]. In gen- 
eral, ANNs represent families of mathematical formulas that 
combine and transform an input data vector into a quantitative 
output or outputs. The parameters of these formulas are deter- 
mined in an iterative training process in which the parameters 
are adjusted in an attempt to match the output produced from a 
set of training cases to target output values. ANNs usually take 
the form of multiple nodes in successive layers. The adjustable 
parameters are represented by weights that connect the nodes in 
adjacent layers, modulated by some activation function that can 
be nonlinear. One common application of ANNs is as pattem 
classifiers because ANNs can be trained to recognize patterns 
in a set of training cases and then match unknown cases to the 
patterns to perform a classification task. This is attractive be- 

Manuscript received September 13, 2002; revised January 22, 2003. This 
work was supported in part by National Cancer Institute (NCI)/National Insti- 
tutes of Health (NIH) under Grant R21 CA93989 and in part by the U.S. Army 
Medical Research and Materiel Command under Grant DAMD17-00-1-0197. 
The Associate Editor responsible for coordinating the review of this paper and 
recommending its publication was J. Liang. 

The author is with the Kurt Rossmatm Laboratories for Radiologic Image 
Research, Department of Radiology, MC2026, The University of Chicago, 5841 
South Maryland Ave., Chicago, IL 60637 USA (e-mail; y-jiang@uchicago.edu). 
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cause it is accomplished without someone explicitly designing 
a mathematical form for the classifier. In CAD, ANNs are used 
to classify true lesions from computer-identified false positives 
[3], [4], malignant from benign lesions [5]-[8], or one from sev- 
eral other differential diagnoses [9]. The typical way in which 
the ANN is employed is that, first, other methods are used to 
extract from the image features of the object of interest, such 
as morphological properties, and second, the ANN is used to 
generate a classification decision or prediction. Being the clas- 
sifier at the final stage of a computer technique, the ANN plays 
a key role in determining the overall performance of the com- 
puter technique. In addition, some CAD techniques require hu- 
mans (radiologists) to interpret the ANN output, thereby giving 
the ANN a whole new role to affect system performance [7]-[9]. 
Optimization of the ANNs and a thorough understanding of the 
statistical properties of the ANN output are, therefore, impera- 
tive for CAD applications. 

ANN optimization is limited in practice by a finite training 
case sample and is accomplished through a stochastic training 
process. This stochastic process gives ANN the ability to avoid 
being trapped at local minima. At the same time, this stochastic 
process makes ANN optimizafion empirical and subject to 
strong influence from statistical variations. It has been shown 
that performance of the properly optimized ANN and one's 
ability to measure that performance accurately depend on the 
numbers of training and testing cases, and how one uses a 
fixed set of cases in training and test (i.e., resampling plans) 
[10]-[12]. These works focus on the overall performance of 
the ANN on a population of cases. In this paper, we report on 
the statistical variation in the ANN output on the individual 
case. We demonstrate statistical variability in the ANN output 
and show that this variability is larger than the variability in the 
ANN overall performance. 

II. THEORY 

A. Variability in the ANN Output 

Conventionally, one develops a single ANN through training 
and, once completed, holds the ANN parameters fixed. Such 
an ANN becomes a deterministic model that a given input data 
vector will always produce a particular, completely predictable 
output value. Therefore, if this ANN is applied repeatedly to a 
given image, the ANN output will always be the same (within 
numerical precision of the computer). This phenomenon gives 
rise to an illusion that the ANN is equivalent to a determin- 
istic mathematical formula in that its outputs are infinitely re- 
producible (or at least up to the limit of the numerical precision 
of the computer used to implement the ANN). 

0278-0062/03$17.00 © 2003 IEEE 
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This deterministic depiction of the ANN is flawed because 
it ignores, in most practical situations, the stochastic nature 
of ANN training—the process that determines the seemingly 
deterministic mathematical formula the ANN uses to calculate 
its output. In the limit of an infinitely large training dataset, 
training of the ANN should normally approach an infinitely 
large number of epochs that, if we assume trapping at local 
minima does not occur, guarantees the result of an optimal 
ANN. However, with a finite training dataset, it is usually not 
desirable to train the ANN indefinitely because of possible 
over-fitting [13]. Unlike in the case of an infinitely large 
training dataset, an asymptotic solution (i.e., a set of weights) 
for the ANN does not exist in such situations, and it is usually 
best to stop the training process at some point that is determined 
empirically—and sometimes rather arbitrarily as we describe 
next. 

The choice of the one ANN from all others or, equivalently, 
the choice of the number of training epochs, can be made based 
on the overall performance of the ANN that can be character- 
ized by the receiver operating characteristic (ROC) curve [14], 
[15]. Therefore, there is a clear reason to choose one partic- 
ular ANN with a higher ROC curve over another ANN with 
a lower ROC curve. However, this choice becomes rather ar- 
bitrary when the ROC curves of the ANNs are similar. Typ- 
ically, as the number of training epochs increase, the overall 
performance of the ANN follows an increasing but noisy tra- 
jectory. As the ANN approaches its "optimal" performance, the 
overall performance of the ANN becomes relatively constant as 
the number of training epochs continues to increase. The "final" 
ANN is usually chosen from these ANNs with similar overall 
performance. The performance of the ANN may decrease if the 
training epochs increase further, when over-fitting occurs. 

Given the lack of an asymptotic ANN in most practical situ- 
ations, a question arises concerning the variability in the ANN 
that one chooses to use. It is clear that once one chooses an ANN 
to use, the output from that ANN bears no variability because 
it will always produce the same predictable output for a given 
ANN input data vector. However, in the absence of an asymp- 
totic ANN, one could very well have chosen a different ANN 
with a different set of weights. This second ANN will also bear 
no variability because it, too, will always produce the same pre- 
dictable output for a given ANN input data vector. However, 
the outputs from the first and the second ANN with respect to 
the same input data vector need not be the same. In general, 
one would expect these ANN outputs to be different because 
the ANNs have different sets of weights, i.e., they use different 
mathematical formulas to calculate their outputs. Therefore, the 
issue of ANN output variability arises given that there is no par- 
ticular reason to choose one ANN over another. 

This discussion of the variability in the ANN output will not 
be meaningful for arbitrarily selected ANNs that have disparate 
overall performance because for all practical purposes low per- 
formers are not of interest. However, for ANNs that have similar 
overall performance that makes it arbitrary to choose one over 
another, variability in the ANN outputs should not be ignored. 
Therefore, one can additionally ask whether the variability in 
ANN outputs is greater than the variability in the ANN overall 
performance for those ANNs that can be legitimately consid- 
ered as "optimized." 

B. Training of Multiple ANNs 

To investigate the variability in ANN outputs, one needs to 
obtain multiple "optimized" ANNs based on a given training 
dataset. In this paper, we obtained these ANNs by assigning 
different "seed values" to a pseudo random number gener- 
ator that regulates the ANN training process. This seed value 
determines the sequence of random numbers that were used 
to determine the initial weights of the ANN and the training 
case sequence within each individual training epoch. There- 
fore, given the training dataset, this seed value to the random 
number generator determines the training trajectory in the ANN 
weight space. By varying this seed value, one in general forces 
the ANN to follow a different training trajectory. 

To determine the "optimal training epochs," we used an 
independent test dataset to monitor the overall performance 
of the ANNs as they were being trained. We then empirically 
selected a particular number of training epochs for each ANN 
based on the ANN performance on this test dataset. Fig. 1(a) 
shows an example of the performance of eight ANNs measured 
by the area under the ROC curve, Az [16], obtained from the 
test dataset and plotted as a function of the number of training 
epochs. This graph shows that the performance of the ANNs 
improved rapidly during the initial training epochs. The ANN 
performance then became relatively constant as the number 
of training epochs increased to about 500, before a varying 
degree of over-fitting occurred as the number of training epochs 
increased further. The training trajectories of the ANNs are 
noisy and they are clearly different from each other at least 
for some portion of the trajectories, e.g., at greater than 500 
training epochs. This confirms that our use of different seed 
values to the random number generator did lead the ANNs to 
follow different training trajectories. 

Based on Fig. 1(a), we selected the "optimal training epochs" 
to be 70 because at this number of training epochs, all of the 
ANNs had a very similar overall performance that approaches 
their best performance. Two ANNs showed slightly higher Az 
values at a greater number of training epochs; but not all the 
ANNs achieved the slightly better performance. Therefore, the 
occasional slightly better performance was considered a random 
event that may be a consequence of the finite size of the test 
dataset or the uncertainty in the fitting of the ROC curves and 
do not represent the "optimal" performance of the ANNs. Al- 
though in general the ANNs are not expected to converge to 
the "optimal" performance at a common number of training 
epochs as they generally follow different training trajectories. 
Fig. 1(a) shows that these ANNs converged to the "optimal" 
performance at a fairly homogeneous speed. Therefore, for sim- 
plicity, we chose a single number of "optimal training epochs" 
for all ANNs in this paper. 

The Az value is a widely used summary index for ROC 
curves. However, it is possible for ROC curves of different 
shapes that represent different ANN performance to have the 
same Az value [17]. To ensure that the "optimal" ANN perfor- 
mance we chose based on the A^ value indeed represented a 
common performance or a common ROC curve shared by all 
ANNs, we also plotted the binormal ROC curve parameters, a 

A 
and 6 (the carets indicate that these are estimated parameters). 



JIANG: UNCERTAINTY IN THE OUTPUT OF ANNs 915 

0.840 

0.835 

0.830 

0.825 

1000 2000 3000 

ANN Training Epoclis 

(a) 

4000 5000 

1.6 

1.4 

1.2 - 

1.0 

0.8 

T" 

11 ii^iil jjmiiTr' •   •   nrfti'—T   iTiti'ir;^|*'lfi1f>iliri'lfiiffl> 

j- 
1000 2000 3000 4000 5000 

ANN Training Epochs 

(b) 

Fig. 1.   Variation of (a) the training trajectory measured by A^ and (b) the 

a and 6 parameters of fitted binorraal ROC curves (the carets indicate that 
these are estimated parameters) of eight ANNs trained on the basis of a single 
training dataset. These trajectories show that the multiple ANNs that we trained 
achieved highly similar overall performance at about 70 epochs. The ANNs 
were trained with arbitrary but different seed values to a random number 
generator and otherwise with identical parameters. Insert shows details of the 
first 100 epochs. The ANNs had a 2-2-1 structure. TTie simulated datasets were 
generated with parameters of a^ = 1 and 6o = 1. Note that a is different from 
Co because a is an estimate of the Euclidian distance between the means of the 
estimated class distributions m 2 dimensions whereas a„ is a one-dimensional 
parameter 

as a function of the number of training epochs. An example 
is shown in Fig. 1(b). It is apparent that between 10 and 500 
training epochs, the ROC curve parameters are virtually the 
same for all the ANNs and, hence, their very similar A^ values. 

III. METHODS 

A. Artificial Neural Networks 

We used feedforward-error back propagation ANNs in this 
paper [18]. The typical ANN had three layers: the input layer 
had the same number of nodes as the dimension of the ANN 
input data vector; the hidden layer had a variable number of 
nodes that was set empirically; and the output layer had one 
node. The nodes in adjacent layers were fully connected. Al- 
though in principle the multiple ANNs trained on the basis of 

a given training dataset do not need to have the same network 
structure, i.e., the same number of nodes in each layer, for sim- 
plicity we only used ANNs of the same network structure in 
this paper. Because these ANNs did achieve very similar and 
near optimal overall performance, as evident from Fig. 1, we 
believe that this simplification did not affect the results of this 
paper. All other empirically determined parameters including a 
learning rate and a weight bias were also kept the same for the 
ANNs except for the random number generator seed value that 
was different for each ANN. All values of the ANN input data 
vector were normalized to between zero and one. The training 
and the test input data shared the same normalization factors, 
and each dimension of the input data vector was normalized in- 
dependently. The binary values of 0.1 and 0.9 were used as the 
ANN target output values in training the ANNs to help improve 
convergence in ANN training. 

B. Simulation Study 

We used both simulated datasets and a dataset from a 
mammography application in this paper. In the simulation 
study, we assumed that the two distinct classes the ANNs 
were designed to distinguish follow multivariate and isotropic 
normal distributions. One class may represent, e.g., the normal 
or disease-free cases, or in a different classification problem, 
benign lesions, whereas the other class represents the abnormal 
or diseased cases, or malignant lesions. The dimensionality of 
the distributions, i.e., the number of variables in the ANN input 
data vector was chosen to be 2 and 8, hereafter referred to as 
two-dimensional (2-D) datasets and eight-dimensional (8-D) 
datasets. We started with 2-D datasets because it is the simplest 
classification problem for an ANN and because one can visu- 
alize 2-D data relatively easily. We used 8-D datasets because 
the ANN input data vector in our mammography dataset was 
also 8-D. Under the normality and isotropy assumptions, 
following a common convention used in ROC analysis and 
without loss of generality, we assumed that the normal class 
follows the multivariate standard normal distribution and that 
the abnormal class follows an isotropic multivariate normal 
distribution with mean of u, where ui = ao/bo for all i, and 
an isotropic variance of l/6o- Therefore, for a 2-D dataset, 
the distribution that represents the normal class centers at (0, 
0) with an isotropic variance of one, and the distribution that 
represents the abnormal class centers at (ao/bg, ao/bo) with an 
isotropic variance of 1/feo. For Oo = 1 and6„ = 1, the abnormal 
distribution centers at (1, 1) with an isotropic variance of one. 
The assumption that the mean of the abnormal distribution 
falls on the 45° line does not cause a loss of generality because 
all other locations of the mean can be transformed to the 45° 
line through axis rotation. Under the normality assumption, 
the ideal observer who uses the likelihood ratio defined by 
the class distributions as the decision variable follows a linear 
decision boundary (or a hyper plane in higher dimensions) 
that is perpendicular to the 45° line. With &„ = 1, the ideal 
observer's ROC curve is obtained by sweeping this linear 
decision boundary monotonically from —oo to -t-oo. For 
bo / 1, parts of the ideal observer's ROC curve correspond to 
two parallel linear decision boundaries. For easy visualization 
of the data, we used only 6o = 1 in this simulation study. For 
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Fig. 2.   The presumed distributions of (a) the normal class and (b) the abnormal 
class in a 2-D simulation study for a„ = 1 and 6„ = 1. 

bo = l, the ideal observer's Az value is determined only by the 
Euclidian distance between the means of the class distributions. 
For flo = 1, the ideal observer's Az value is 0.84. We used the 
following parameters in the simulation study chosen arbitrarily 
and in part because the corresponding ideal observer's A^ 
covered a wide range of values: for 2-D datasets, Uo = 0.707, 
1, 1.202, and 1.414 with the ideal observer's Az values of 
0.76, 0.84, 0.89, and 0.92, respectively; and for 8-D datasets, 
Uo - 0.707, 1, and 1.202 with the ideal observer's A^ values 
of 0.92, 0.98, and 0.99, respectively. An example of the 2-D 
distributions is shown in Fig. 2 for flo = 1 and bo = I. 

For ANN training, we used training datasets of 200 cases or 
1000 cases with an equal number of cases from each class drawn 
randomly from their respective distributions. For ANN testing, 
we used an independent test dataset of 2000 cases with an equal 
number of cases from each class drawn randomly from the re- 
spective distributions. For the 2-D datasets, the ANN had two 
hidden nodes and, therefore, a 2-2-1 network structure. For the 
8-D datasets, an 8-6-1 network structure was used. Eight ANNs 
were trained on the basis of each training dataset. Each ANN 
was trained using a different seed value for the random number 
generator, set arbitrarily to be 1001, 2001, 3001, etc. Training 
of the eight ANNs was stopped at a common number of training 
epochs based on test data similar to those shown in Fig. 1. 

C. Mammography Study 

A similar study using a mammography dataset was carried 
out. The purpose was to demonstrate an example of the sim- 
ilar effects as observed in the simulation studies. The task of 
this mammography application was to classify clustered micro- 
calcifications in mammograms as malignant or benign based on 
eight computer-extracted image features. This application is de- 
scribed in detail elsewhere [19]. An 8-6-1 network structure was 
used for the ANNs (the number of hidden nodes, 6, was de- 
termined as appropriate in a previous work [19]). The dataset 
contained 53 cases (19 malignant) and a total of 107 individual 
mammograms (40 depicting malignant microcalcifications). A 
leave-one-out method was used because of the small size of this 
dataset [10]. Using the leave-one-out method, the dataset was 
partitioned such that 52 cases were used as training cases and 
the one left-out case was used as a test case. Once the training 
and test process was completed, the dataset was re-partitioned 
with the same number of training and test cases but with a dif- 
ferent test case. This process was repeated until all 53 cases were 
used as a test case and, subsequently, an ROC curve and an A^ 
value were computed from the results of all 53 test cases. The 
advantage of this method is that all 53 cases can be used for both 
training and testing while the test cases are independent from 
the training dataset to avoid a learning bias. Because a typical 
case consisted of two mammograms of the same cluster of mi- 
crocalcifications imaged from the mediolateral oblique and the 
crandiocaudal projections, these mammograms from the same 
patient were kept as a unit when the case was assigned as ei- 
ther a training case or a test case, so that the test cases were 
truly independent of the training cases. However, the ANNs an- 
alyzed each mammogram independently even though it may be 
one of two films from the same case. These ANN outputs from 
the mammograms of the same case were combined into a single 
number by retaining only the maximum output value (i.e., the 
output most indicative of a malignancy) for calculation of the A^ 
values [19]. Eight ANNs were trained with identical parameters 
except for different seed values to the random number generator 
that were arbitrarily set to be 1001,2001, 3001, etc. 

IV. RESULTS 

A. Simulation Study of 2-D Datasets 

A comparison of the variability in the overall ANN perfor- 
mance and the variability in the individual ANN output is shown 
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Fig. 3. Comparison of the magnitude of the standard deviation in A^ and the 
magnitude of the standard deviation in ANN output. The standard deviations 
in Aa are considerably larger than the standard deviations in ANN output. 
Standard deviation in ANN output was calculated for each given test case 
and was averaged over 2000 test cases. Data were obtained from eight ANNs 
trained on the basis of a given training dataset, with identical parameters except 
for an arbitrary but different seed value to a random number generator. ANN 
structures were 2-2-1 (small symbols) or 8-6-1 (large symbols). The niunber of 
training cases was 200 (hollow symbols) or 1000 (soHd symbols) with an equal 
number of training cases from each class. For mammography results, the total 
number of cases was 53 and a leave-one-case-out method was used for training 
and for performance evaluation. 

in Fig. 3. Each data point was based on eight ANNs developed 
from a given training dataset. On the one hand, the variability 
in the overall ANN performance was quantified by the standard 
deviation of the eight Az values. Each Aj; value represented the 
performance of one ANN measured from 2000 independent and 
randomly sampled test cases. On the other hand, the variability 
in the individual ANN output was represented by the standard 
deviation of the output values for a given test case. Because 
there were 2000 test cases, Fig. 3 plots the average of the 2000 
standard deviations that correspond to each test case. Each data 
point corresponds to the results of a common number of training 
epochs shared by eight ANNs trained on a given training dataset. 
To minimize the chance of unreliable results, we recorded the 
results of a total of three numbers of training epochs for each 
training dataset. These results show virtually identical average 
Az values and only small variations in the standard deviations in 
Az and in the ANN outputs. Therefore, for clarity. Fig. 3 shows 
only one data point for each training dataset. 

The standard deviation in the Az value was negligible for all 
practical purposes (< 0.001). This is consistent with Fig. 1 that 
shows we were able to obtain multiple ANNs that have very 
similar, nearly optimized, overall performance. There is a slight 
downward trend of the standard deviations in A^ as the average 
Az value increases. This indicates that as the Az value increases, 
it is easier to optimize the ANNs and the performance of the 
multiple ANNs becomes more similar. 

The average standard deviation in the ANN output was on 
the order of 0.01 to 0.1. Given that the ANN output values are 
between zero and one, these values are small but are not neg- 
ligible. The average standard deviation in the ANN output is 
approximately two orders of magnitude larger than the standard 
deviation in the A^ values. Therefore, while the overall perfor- 
mance of the ANNs converges toward the optimal performance, 

the variability in the ANN output for individual test case remains 
relatively large. 

Furthermore, the variability in the ANN output is not a con- 
stant for all test cases. Fig. 4(a) shows the standard deviation 
in the ANN output as a function of the ANN input data vector. 
Fig. 4(a) plots the input data as a 2-D matrix. Each dimension 
of this matrix represents one scalar feature value that is scaled 
to between zero and one for input to the ANN. The two classes 
that the ANNs were trained to classify populated this matrix as 
shown in Fig. 2. Fig. 4(a) shows that the variability in the ANN 
output is smallest at the lower-left and upper-right comers. Ac- 
cording to Fig. 2, these two comers are most likely populated by 
one class only. Therefore, the variability in the ANN output was 
smallest where only one class occupies the local ANN input data 
space. The variability in the ANN output increases toward the 
negative diagonal and it is greatest near the negative diagonal, 
where the two classes have an equal probability to populate (see 
Fig. 2). 

Fig. 4(a) shows that the variability in the ANN output follows 
a linear pattem that sweeps across the matrix of the input data 
approximately in parallel to the negative diagonal. This linear 
pattem corresponds to the linear decision boundaries manufac- 
tured by the ANNs during their training process. Fig. 4(b) shows 
the average output of the eight ANNs as a function of the ANN 
input data vector, plotted in the same way as Fig. 4(a). The av- 
erage ANN output follows the same linear pattem as the vari- 
ability in the ANN output that sweeps across the matrix of the 
ANN input data approximately in parallel to the negative di- 
agonal. However, unlike the variability in the ANN output that 
maximizes near the negative diagonal, the average ANN output 
increases monotonically from the comer most likely occupied 
by one class, to the opposite comer most likely occupied by the 
other class. These decision boundaries are virtually the same 
as those used by the ideal observer in this simple classification 
problem, offering yet another confirmation that the ANNs were 
nearly optimized during their respective training processes. 

Fig. 4 shows that the variability in the ANN output was 
smallest when the average ANN output unequivocally predicts 
the outcome of one class versus the other, i.e., when the 
average ANN output is near zero or one. On the other hand, the 
variability in the ANN output was greatest when the average 
ANN output was equivocal, i.e., when the average ANN output 
was about 0.5. This is more clearly shown in Fig. 5 that plots 
the standard deviation in the ANN output as a function of the 
average ANN output. In this particular example, the variability 
in the ANN output follows a tight band that maximizes when 
the average ANN output is between 0.5 and 0.6. 

This dependence of the ANN output variability on the magni- 
tude of the output is likely caused in part by a dependence of the 
sum-of-square error used in ANN training on the training case 
ratio. While the total number of training cases from each class 
is fixed in a given training dataset, the local training caseratio 
can vary considerably in small regions of the ANN input data 
space. For example, in the distributions shown in Fig. 2, the local 
training case ratio is close to unity near the negative diagonal, 
but is far from unity near the lower-left and upper-right cor- 
ners. Fig. 6 plots the contribution from each training case to the 
sum-of-square error as a function of ANN output and as a func- 
tion of the training case ratio. With equal numbers of training 
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Fig. 4. The distribution of the magnitude of (a) the standard deviation and 
(b) the average value in the output of eight ANNs plotted in the ANN input 
data vector space sampled from the distributions shown in Fig. 2 (training cases 
n = 200 with equal number of cases from each class, ANN structure 2-2-1). 
The standard deviation in the ANN outputs are not uniform in the ANN input 
data vector space and the average of the ANN outputs shows that the ANNs are 
similar to an optimal linear classifier. Top bars show grayscale maps. The ANNs 
were trained on the basis of a single training dataset with identical parameters 
except for an arbitrary but different seed value to a random number generator. 

cases from each class, i.e., for a training case ratio of 1:1, the 
ANN output value that minimizes the sum-of-square error is 

0.15 

0.10 - 

0.05 - 

0.00 
0.4 0.6 

ANN Output 

Fig. 5. The standard deviation in the output of eight ANNs as a function of 
the average ANN output. See also Fig. 4. The ANNs were trained on the basis 
of a single training dataset with identical parameters except for an arbitrary but 
different seed value to a random number generator. Training cases (n = 200 
with equal number of cases from each class) were sampled from the distributions 
shown in Fig. 2. ANN structure was 2-2-1. 
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Fig. 6. Schematic illustration of the relationship between the sum-of-square 
error used in ANN training and the ratio of the training cases from each input 
data class. Although the overall number of training cases from each class may 
be equal, this relationship will prevail locally in the vector space of the input 
data where the local ratio of the training cases from each class can be far from 
unity. 

is 0.5. However, the error curve for a 1:1 training case ratio is 
relatively shallow. Therefore, an ANN output of 0.8 will pro- 
duce a relatively small sum-of-square error (0.58 versus 0.50). 
In contrast, the error curve for a 100:1 training case ratio fol- 
lows a steeper curve. The ANN output value that minimizes the 
sum-of-square error is 1.0 and an ANN output of 0.7 will pro- 
duce a relatively large sum-of-square error (0.31 versus 0.11). 
The effect of this on the training of multiple ANNs is that in 
the case of a 100:1 training case ratio, the ANNs will be more 
likely to produce very similar output values close to one (or 
zero), whereas in the case of a 1:1 training case ratio, the ANNs 
will produce output values close to 0.5 but will be less likely to 
produce the same output value. Note that the fact that the min- 
imum error of 0.5 for a 1:1 training case ratio is considerably 
greater than the minimum error of 0.11 for a 100:1 training case 
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ratio. This will exacerbate the variability in the case of a 1:1 
training case ratio because the ANN will continue modify its 
weights to try to reduce the sum-of-square error even when the 
minimum error of 0.5 has been achieved for a 1:1 training case 
ratio. Therefore, one would predict based on Figs. 2 and 6 that 
the multiple ANNs will have small variability in their output 
values near the lower-left and upper-right comers and will have 
greatest variability near the negative diagonal. The effect of this 
relationship between the sum-of-square error and the training 
case ratio can be greater than Fig. 6 indicates in certain regions 
of the ANN input data space because of the nonuniform prob- 
ability of the local total number of cases. Fig. 6 shows this ef- 
fect normalized to each case and does not show the effect of the 
(local) total number of cases. 

To prove that the local training case ratio contributes to the 
causes for the dependence of the ANN output variability on the 
magnitude of the output, we modified the ANN training target 
values so that instead of using binary training target values, we 
used the likelihood ratio calculated from the two underlying 
class distributions as the training target value. By doing so, we 
eliminated the dependence of the sum-of-square error used in 
ANN training on the local training case ratio. With this modi- 
fication, the average standard deviation in the ANN output was 
reduced by one order of magnitude or more while the standard 
deviation in the Az value remained virtually unchanged. The 
variability in the ANN output no longer had the characteristic 
dependence on the magnitude of the output of larger variability 
near the output of 0.5, indicating that the effects of local training 
case ratio was eliminated. However, with a reduced order of 
magnitude, the variability in the ANN output was still not a con- 
stant for all output values, suggesting that there may be other 
secondary causes for the dependence of the variability in the 
ANN output on the magnitude of the output. 

B. Simulation Study of8-D Datasets 

Results from the 8-D simulated datasets were similar to those 
from the 2-D simulated datasets. A comparison of the variability 
in the overall ANN performance and the variability in the ANN 
output is shown in Fig. 3 alongside results from the 2-D datasets. 
As expected, for the same Ug and bo parameters, the average A^ 
values from the 8-D datasets were substantially higher than from 
the 2-D datasets. But the standard deviation in the Az; values 
of the eight ANNs and the average standard deviation in the 
ANN outputs were comparable to those of the 2-D datasets. The 
average standard deviations in the ANN outputs were approxi- 
mately two orders of magnitude higher than the standard devia- 
tions in the A^ values. 

C. Mammography Study 

Results of the variability in the A^ values and in the ANN out- 
puts from the mammography study are also shown in Fig. 3. The 
standard deviation in the Az value was 0.005, larger than those 
obtained in the simulation studies. The average standard devia- 
tion in the ANN outputs was 0.013, smaller than, but within the 
same order of magnitude of, those from the simulation studies. 
The average standard deviation in the ANN outputs was approx- 
imately twice as large as the standard deviation in the A^ values. 
These results were obtained from a smaller dataset (53 cases) 
using a leave-one-out method. 

V. DISCUSSION 

The purpose of this paper is to show the existence of vari- 
ability in the ANN output. Using simulations and an example 
from a mammography application, we found that the average 
standard deviation in the ANN output is on the order of 0.01 to 
0.1. It is larger than the standard deviation in the Az values that 
measures the overall ANN performance, and it is two orders of 
magnitude larger than the standard deviation in the Az values 
in the simulations. The magnitude of the standard deviation in 
the ANN output appears to be large enough to have some prac- 
tical implications on the use of the ANN outputs and, therefore, 
needs to be studied, but it is small enough to not undermine seri- 
ously the general reliability of ANNs. These findings contrast a 
common misconception that views the ANN as a deterministic 
mathematical model without variability. This variability in the 
ANN output should not be a surprise because the task of statis- 
tical prediction or classification is inherently uncertain. In the 
statistical estimation of a "population value," an estimate from 
a measurement made on a given sample may be perfectly re- 
producible, but in general it will not be perfectly reproducible 
if measured from a different sample. Because of this, all statis- 
tical estimates are considered inherently uncertain. Similarly, in 
the use of ANNs, we are interested in the "best" prediction the 
ANN can make, not in the prediction of a particular ANN chosen 
somewhat arbitrarily. Therefore, it is only natural to recognize 
that the ANN output is associated with statistical variability. 
What may be surprising is that little or no attention has been 
devoted to this type of ANN variability in the medical imaging 
literature [20], [21]. 

While we compared the magnitude of the ANN output vari- 
ability to the standard deviation in the Az value, this comparison 
is not necessary to recognize the variability in the ANN output, 
and we used the Az value simply as a point of reference because 
it is on a similar numerical scale as the ANN output. One can 
also compare the magnitude of the ANN output variability to 
the scale of the ANN output and conclude that the output vari- 
ability is not negligible. However, it was necessary for us to use 
the Az value as a means to ensure that the multiple ANNs that 
we obtained were close to being optimized because otherwise 
the analysis would not have been meaningful. 

We will explore the practical implications of the variability 
in the ANN output in a future study. It is clear that the vari- 
ability in the ANN output does not necessarily affect the overall 
ANN performance. In another word, the variability in the ANN 
output that we demonstrate is invisible to ROC analysis. This is 
because systematic shifts in the ANN output that affect the two 
classes in the same way will not affect the Az value, but will be 
seen as variability in the ANN output. Indeed, multiple ANNs 
can be trained from a single training dataset to achieve highly 
similar overall performance as measured by the Az value while 
exhibiting relatively large variability in the ANN output. How- 
ever, the variability in the ANN output may affect the use of the 
ANN output as a classifier prediction because this variability 
could cause the ANN output to be interpreted inaccurately, par- 
ticularly when humans (radiologists) must interpret the ANN 
output [7], [8]. 



920 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 22, NO. 7, JULY 2003 

The nonuniform dependence of the variability in the ANN 
output on the magnitude of the output as shown in Fig. 5 may 
further affect the interpretation of the ANN output. Variability 
in the ANN output tends to be largest where the ANN output is 
equivocal, further weakening the ANN prediction in such out- 
puts. We have identified one cause for the variability in the ANN 
output to be the use of binary training target output values and 
the consequent dependence of the sum-of-square error on the 
local training case ratio in the ANN input data space. We showed 
that using the likelihood ratio as the training target output value 
could reduce the variability in the ANN output because it elim- 
inates the dependence of the sum-of-square error on the local 
training case ratio. Unfortunately, however, this method cannot 
be used in real-world classification tasks where the likelihood 
ratio is unknown. 

The findings that we report here are based in large part on 
simulation studies of simple classification tasks in which the 
two classes are assumed to follow isotropic multivariate normal 
distributions. These simple classification tasks were chosen for 
illustration purposes because a theoretical expectation can be 
derived a pnon and because the results are readily interpretable. 
However, these simple classification tasks may not adequately 
reflect the behavior of the ANNs in real-worid classification 
tasks. Furthermore, we studied only the type of feed-forward 
and error back propagation ANN that may not reflect the be- 
havior of other types of ANNs. Moreover, we have adopted a 
number of simplifications such as fixing the ANN structure and 
using a common number of training epochs for multiple ANNs 
trained on the basis of a single training dataset. These may have 
affected our findings in some unknown way. Nevertheless, de- 
spite these simplifications, our semi-theoretical analysis indi- 
cates that variability in the ANN output is a natural expectation. 
We expect that similar variability in the ANN output will be 
demonstrated in more sophisticated and more realistic simula- 
tions, and in the analyses of real-worid ANN classifiers. 

The results from our mammography study could help put 
into perspective the findings from our simulations. Like in the 
simulations, the average standard deviation in the ANN output 
was larger than the standard deviation in the A^ values in the 
mammography study. However, unlike in the simulations, the 
difference between the standard deviations in the ANN output 
and in the Az values is much smaller in the mammography 
study. A careful inspection of Fig. 3 shows that the standard 
deviation in the A^ values is one order of magnitude larger 
than those in the simulations, whereas the standard deviation 
in the ANN output is within the same order of magnitude as 
those in the simulations. Two reasons may have contributed to 
this. The first is that the leave-one-out method was used in the 
mammography study but not in the simulations. Because of the 
leave-one-out method, an Az value actually characterizes 53 
separate training processes using 53 slighfly different training 
datasets. One would expect the 53 different training datasets to 
induce greater variability than any single training dataset. In ad- 
dition, while the substantial similarities among the 53 different 
training datasets would lead one to expect similar ANN perfor- 
mance, it is not as readily expected that the ANNs would achieve 
similar performance at the same number of training epochs. 
However, the leave-one-out method does not account for these 

differences and uses a common number of training epochs for 
the 53 ANNs ti-ained on all training datasets. As a result, the 
magnitude of noise in the training trajectory (i.e., fluctuation) 
was greater in the Az values as a function of the number of 
training epochs. The effect is that it is difficult to obtain multiple 
ANNs (that were trained with different random seed values) that 
have very similar Az values, particularly when we required that 
the multiple ANNs share a common number of training epochs 
as in the simulations. The second reason is that the number of 
cases in the mammography study (53 cases) was smaller than in 
the simulations. The small number of cases made it necessary 
to use the leave-one-out method, but the leave-one-out method 
likely had compounded the effect of the small number of cases 
to induce greater variability in the Az values. The standard de- 
viation in ANN output exhibited the characteristic dependence 
on the magnitude of the output that is larger near the output of 
0.5 (as shown in Fig. 5), but this relationship did not conform 
to a tight band as in the simulations, possibly due to additional 
sources of variation such as the use of the leave-one-out method 
and the small number of cases. 

In summary, we have shown that the outputs of multiple 
ANNs trained on the basis of a single ti-aining dataset that 
achieve highly similar overall performance as measured by 
the Az value exhibit small but nonnegligible variability. The 
average standard deviation in the outputs of the multiple 
ANNs can be two orders of magnitude larger than the standard 
deviation in the Az values. The variability in the ANN output 
is caused in part by the use of binary training target values and 
a consequent dependence of the sum-of-square ANN training 
error on the local training case ratio in the ANN input data 
space. The magnitude and dependence of this variability in the 
ANN output, and the implication of this variability on the use 
of the ANN predictive output need to be studied further. 
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In this work, we present a calcification-detection scheme that automatically localizes calcifications 
in a previously detected cluster in order to generate the input for a cluster-classification scheme 
developed in the past. The calcification-detection scheme makes use of three pieces of a priori 
information: the location of the center of the cluster, the size of the cluster, and the approximate 
number of calcifications in the cluster. This information can be obtained either automatically from 
a cluster-detection scheme or manually by a radiologist. It is used to analyze only the portion of the 
mammogram that contains a cluster and to identify the individual calcifications more accurately, 
after enhancing them by means of a "Difference of Gaussians" filter. Classification performances 
(patient-based Aj=0.92; cluster-based A^=0.11) comparable to those obtained by using manually- 
identified calcifications (patient-based Aj=0.92; cluster-based A2=0.82) can be achieved. © 2003 
American Association of Physicists in Medicine.   [DOI: 10.1118/1.1559884] 
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I. INTRODUCTION 

Screening mammography is the best available tool for de- 
tecting cancerous lesions before clinical symptoms appear, 
and it has been shown to reduce breast cancer mortality.''^ 
Since about half of the cancers detected by mammography 
correspond to clustered microcaicifications, these lesions are 
one of the early signs of early breast cancer.^ However, be- 
cause of the small size of microcaicifications and the some- 
times very slight differences in the appearance of benign and 
malignant clusters, the differentiation of benign and malig- 
nant lesions represents a very complex problem. In fact, it 
has been reported that only 10%-35% of breast biopsies 
yields cancer."*'' 

Computer-aided diagnosis* (CAD) can potentially help ra- 
diologists improve the diagnosis of malignant and benign 
breast lesions and as a consequence reduce the number of 
biopsies performed on benign lesions.^"'" Several research- 
ers have shown that the radiologists' performance in distin- 
guishing benign from malignant calcifications is statistically 
significantly improved when they use a computer aid.""'^ 

Researchers at the University of Chicago have developed 
a computerized method for the classification of clustered 
microcaicifications.^''^ Eight features, related to microcalci- 
fication size, shape, quantity, and spatial distribution, are au- 
tomatically extracted from the image. An artificial neural net- 
work (ANN) combines these features to produce an estimate 
of the likelihood of malignancy of each cluster present in the 
image. This likelihood can then be used by a radiologist as a 
second opinion to decide whether the microcalcification clus- 
ter is malignant or benign. The feature extraction process of 
this classification method requires as input the x and y loca- 
tions of each microcalcification. In the previous studies, the 

locations of the microcaicifications were determined manu- 
ally. Localizing each calcification in a manual fashion is a 
time-consuming task and would not be practical for a clinical 
implementation, considering that the number of calcifications 
in a cluster can be 100 or even higher. Therefore, the auto- 
matic identification of the calcifications prior to the classifi- 
cation of clusters is desired. 

Researchers at the University of Chicago have also devel- 
oped a cluster-detection scheme.'"*"^" In order to determine 
the presence of a cluster in a mammogram, it is not necessary 
to identify all calcifications. In fact, the average number of 
calcifications detected by the cluster-detection scheme is 
about 40%, plus 20% of false-positives.^' However, the num- 
ber of calcifications that are identified in a cluster is relevant 
for classification piuposes. Features such as the number of 
calcifications, the cluster size, and the mean calcification 
area, are used to distinguish benign from malignant clusters, 
and their values will depend upon the accuracy of the detec- 
tion of individual microcaicifications. For these reasons, the 
cluster-detection and the cluster-classification schemes have 
not yet been merged into a single unit. 

Jiang et al}^ studied the dependence of the ANN classifi- 
cation scheme on the correct detection of individual calcifi- 
cations. They found that if the average number of calcifica- 
tions input to the classifier is above 40% of the actual 
calcifications, plus an average fraction of false signals of 
below 50%, the performance of the network does not vary in 
a significant way when compared to the performance of five 
radiologists. Also, training the ANN with computer-detected 
microcaicifications degraded the performance of the classifi- 
cation scheme. 

In this work, we present a scheme for a more precise 
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TABLE I. Parameters of the calcification-detection scheme. 

Cluster class 
Number of true 
calcifications, N 

N<6 
6«Af«10 

N>\0 

Range R^ for 
global threshold 

[30, 50] 
[50, 100] 

[100, 200] 

824 

Minunum number 
of signals S^„, for 

local threshold 

3 
6 
11 

localization of the calcifications once a cluster is detected, in 
order to generate, automatically, the input for the cluster- 
classification scheme. The new scheme will be referred to as 
the calcification-detection scheme to differentiate it from the 
cluster-detection scheme. We compare the performance of 
the classification scheme when its input, i.e., the locations of 
the individual calcifications in the cluster, is provided (a) 
manually, (b) automatically by the cluster-detection scheme 
(both cluster and individual calcifications are computer de- 
tected in this case), and (c) automatically by different oper- 
ating points of the calcification-detection scheme presented 
in this work (the clusters are manually identified in this 
case). 

For each cluster in both databases, a researcher manually 
identified the microcalcifications by using a high-quality 
computer monitor and by referencing the film mammograms. 
For each cluster, its bounding box, the smallest rectangle that 
contains the entire cluster, was determined by using the 
manually-identified calcifications. Next, a region of interest 
defined by the bounding box plus a 55-pixel margin sur- 
rounding it was extracted. The additional margin was needed 
for calculating the features as input to the ANN cluster 
classifier. 

We used database I to determine the appropriate param- 
eters of the calcification-detection scheme, and database II to 
evaluate the performance of the resulting scheme. 

II. MATERIALS AND METHODS 

A. Databases and regions of Interest 

Two independent mammogram databases were used in 
this study. All films contained at least one cluster of micro- 
calcifications, the biopsy proven to be either benign or 
malignant. 

Database I consisted of 100 mammograms from 53 pa- 
tients. Thirty four patients presented benign microcalcifica- 
tion clusters while the remaining 19 had malignant clusters. 
On average each patient presented two microcalcification 
clusters, which were either different clusters or the same 
cluster imaged in different views. Jiang et al.^ reported the 
performance of five radiologists in the rating of malignancy 
potential of the clustered microcalcifications, which shows 
that a large number of cases are difficult to diagnose. The 
mammograms were digitized with a Fuji drum scanner with 
a gray-scale resolution of 10 bits and a pixel size and sam- 
pling rate of 0.1 mm/pixel. There were a total of 107 clusters 
(40 malignant, 67 benign), of which 10 belonged to class 1, 
39 to class 2, and 58 to class 3. The cluster classes are de- 
fined according to the number of calcifications present in the 
cluster in the first two columns of Table I. 

Database II consisted of 237 mammograms from 131 pa- 
tients. Sixty-six patients presented benign microcalcification 
clusters while the remaining 65 had malignant clusters. On 
average, there were 1.8 microcalcification clusters per pa- 
tient. The films were digitized with a Lumiscan-100 (Lumi- 
sys, Sunnyvale, CA) scanner with the same spatial and gray- 
scale resolution and sampling rate as for database I. Two 
hundred forty six microcalcification clusters (123 malignant, 
123 benign) were present in this set of images. Six clusters 
belonged to class 1, 62 to class 2, and 178 to class 3. 

B. Description of the calcification-detection scheme 

A flow-chart of the calcification-detection scheme is 
shown in Fig. 1. The scheme requires two inputs: a region of 
interest that contains a cluster of microcalcifications and the 
class to which the cluster belongs according to its number of 
calcifications, N. Three classes were used:^^ class 1 if N<6, 
class 2 if e^N^lO, and class 3 if N>10. This information 
was used to devise a more accurate calcification segmenta- 
tion procedure. 

The calcifications were first enhanced by means of a Dif- 
ference of Gaussians (DoG) fiher^' and then segmented via 
global and local thresholdings. The DoG filter smooths the 
image with two Gaussian kernels of different standard devia- 
tions, cTi and 0-2, and then subtracts one smoothed version of 
the image from the other. Database I was used to empirically 
select the values of cri = l.l, 0-2=1.4 with kernel sizes of 
7X7 and 9X9 pixels, respectively. With these parameters, 
the effect of the filter was to enhance signals of the typical 
microcalcification of size 3X3 pixels. 

A global and a local thresholding operations then seg- 
mented the enhanced potential calcifications (referred to as 
signals in this paper). The global thresholding kept a number 
of signals within the range, /?,., where R^ depended on the 
cluster class (Table I). The minimum and maximum bound- 
aries of R^ were empirically set to lie well above the ex- 
pected number of calcifications, N, in order to increase the 
chances of thresholding all the actual calcifications. The lo- 
cal thresholding was applied to the kept signals in order to 
reduce false-positives. In this step, a minimum number of 
signals, S^,^, was always segmented where S^am depended 
on the cluster class and was set as the minimum number of 
calcifications required for the cluster to belong to each class 
(Table I). 
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Inputs 
- Region of Interest 
-Cluster class (1,2 or 3) 

DoQ filter 

Global thresliold 
7i*j(«(to segment 5max(Rc) 

— lount numtier of    1 
segnfiented signals, S \ 

I 
SeRc"} 

No If S < mln(Rc) => Tin*./« Tibt./ +47" 
if S> max(Rc) => Taatti= Tghbi-hT 

Yes 

Ijocal threshold for each signal 

Count number of 
segmented signals, S 

S2Smln1 
No For each signal, Tioai' Thai-^T 

LYes 

End 

FIG. I. Flow-cliart of the calcification-detection scheme. 

The global thresholding was iterative. The initial global 
threshold T^ahii was set as the gray level such that the num- 
ber of pixels above it equaled to five times the upper limit of 
Re. Here it was assumed that the average signal size is five 
pixels, which agrees with typical calcification areas. After 
applying this threshold, the number of candidate calcifica- 
tions, 5, was counted. Signals with an area of 1 pixel or 
larger than 100 pixels were excluded because they are not 
likely to be real microcalcifications. Also, signals that were 
within 55 pixels from the edge of the region of interest were 
ignored because this area was not part of the cluster bound- 
ing box. If S did not lie within R^, Tgiobai was increased or 
decreased by a small step, Ar, where AT was selected em- 
pirically as 0.1. Note that the gray level of the image was no 
longer quantized as in the original image after the DoG fil- 
tering. This process was repeated until the number of signals 
S fell within R,. 

The local threshold was also iterative. Centered on each 
signal identified in the previous step, a 100X 100-pixels box 
was defined. In this box, the mean /j, and standard deviation 
a of the background gray levels were calculated by exclud- 
ing those pixels that were identified in the global threshold 
step as potential signals. The initial local threshold Ti^^^ was 
set &s fi + ka, where ^ is a variable parameter. If the maxi- 
mum gray level of the signal was below Ti^^^, the signal 

was discarded. Once all signals had been analyzed in this 
way, the number of remaining signals 5 was compared to 
5„i„ (Table I). If 5<5n,in, r,ocai was decreased by AT. Again, 
S was calculated and compared to 5mi„. This process was 
repeated until S^S^in- 

The output of the calcification-detection scheme is the 
center-of-mass coordinates of detected signals and can be 
used as input to the classification scheme. 

C. Evaluation of the performance of computer 
schemes for the detection of individual calcifications 

The performance of the computerized detection of indi- 
vidual calcifications was evaluated by counting the number 
of signals that matched actual calcifications (true-positive 
signals) and the number of signals that did not have such 
correspondence (false-positive signals). A signal was consid- 
ered a true-positive if its center of mass lay within five pixels 
from a true calcification. True-positive detection, TPDj, can 
be defined as the ratio of the number of true-positive signals 
to the total number of calcifications present in the cluster.^' 
In the same way, false-positive detection, FPD^, can be 
defined as the ratio of the number of false-positive signals 
to the total number of calcifications present in the cluster. 
Therefore, for manually-identified calcifications 
TPDj = 100% and FPD^=0%. Note that FPDj can be larger 
than 100%. 

D. Computerized classification of clustered 
microcalcifications 

1. Description of ttie ciassification sctieme 

The classification scheme required as input the x and y 
locations of the microcalcifications. First, the microcalcifica- 
tions were segmented and eight features that describe calci- 
fications both individually and as a cluster, were automati- 
cally extracted. The features, described in detail in Ref. 8, 
include (a) the number of microcalcifications in a cluster, (b) 
the mean area, (c) the mean effective volume, (d) the relative 
standard deviation of the effective thickness, (e) the relative 
standard deviation of the effective volume, (f) the second 
highest shape irregularity value, (g) the cluster area, and (h) 
the cluster circularity. These features were fed to a feed- 
forward ANN with one hidden layer of six units and an out- 
put layer of one unit. The ANN output was related to the 
likelihood of malignancy of the cluster. 

2. ANN training 

ANN training was performed with the error-back- 
propagation algorithm in a leave-one-patient-out fashion. All 
clusters that corresponded to one patient were set aside as a 
test set, and the remaining clusters were used for training. 
This procedure was then repeated for the next patient, until 
all clusters were classified. 

3. Different input data to ttie ciassification sctieme 

In this work, we compare the performance of the cluster 
classifier when its input was provided (a) manually identify- 
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ing the calcifications, (b) automatically identifying both the 
cluster and the calcifications (with the cluster-detection 
scheme), and (c) automatically identifying the calcifications 
(with the calcification-detection scheme) in manually identi- 
fied clusters. The ANN was re-trained for the different input 
data, i.e., for the features that were extracted when the x and 
y locations of the individual calcifications were given by (a), 
(b), and (c). Note that (c) also included several data sets, 
each corresponding to a different operating point of the 
calcification-detection scheme. 

E. Evaluation of the performance of the classification 
scheme 

The performance of the classifier was evaluated in two 
different ways: per patient and per cluster.* The per cluster 
analysis was direct because each cluster was given a malig- 
nancy rating by the ANN. However, two or more different 
clusters or the same cluster imaged in different views, may 
be from the same patient. A radiologist would analyze all 
clusters in all available views in order to diagnose a patient. 
The approach taken for the per patient analysis was to keep 
only the maximum malignancy rating of all clusters associ- 
ated with the same patient. Receiver operating characteristic 
(ROC) analysis^'*'^' was used to evaluate the performance of 
the classifier on both the per patient and the per cluster bases. 
ROC curves, as well as the area A^ and partial area^^ o.9(Az 
under the curves were estimated with Metz's LABR0C4 
software. 

III. RESULTS 

A. Detection of Individual calcifications 

The performance of the cluster-detection scheme for the 
detection of individual calcifications, using database I, was: 
TPD,=55%±21% and FPDj=20%±33%. These numbers 
were obtained by analyzing only true-positive detected clus- 
ters. The sensitivity in terms of cluster detection for this 
database was 78% with 2.5 false positive clusters per image. 

A more accurate automatic identification of individual 
calcifications was achieved by the calcification-detection 
scheme (Fig. 2). 

B. Performance of the classification scheme for the 
different Input data 

1. Manually-identified calcifications 
When manually-identified calcifications fi^om database I 

were used as the classifier input, the A^value equaled 0.92 on 
a per patient analysis and 0.83 on a per cluster analysis.* The 
corresponding partial area indices were 0.82 and 0.48 (Table 
11). 

2. Automatically-identified clusters and 
calcifications with the cluster-detection scheme 

The performance of the classifier was substantially de- 
graded when the microcalcifications detected by the cluster- 
detection scheme were used as the classifier input. The area 
under the ROC curve had a value of 0.81 on a per patient 
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FIG. 2. FROC curve of the calcification-detection scheme on database I. The 
numbers indicate the value of k associated with each point. 

analysis and 0.79 on a per cluster analysis. The correspond- 
ing partial area indices were 0.33 and 0.29 (Table II). 

3. Automatically-Identified calcifications with the 
calcification-detection scheme 

Figure 3 shows the Aj and o.goAj of the ANN as a function 
of the calcification-detection parameter, k, in both the per 
patient (a), (b) and per cluster (c), (d) analyses. The straight 
solid and dashed lines represent the index values obtained 
when the classification scheme input was provided by 
manually-identified calcifications and by the cluster- 
detection scheme, respectively (Table 11). The ROC curves of 
these two cases are compared to the curve obtained when 
k=3.2 in Fig. 4. Table III compares the area and partial area 
indices shown in Fig. 3 to the results of manual identifica- 
tions. The fractions of cancers correctly classified (on a per 
patient basis) at fixed false positive fractions of 50% and 
30% are shown in Table IV. 

C. Evaluation on an independent mammogram 
database 

The calcification-detection scheme with k=3A, was run 
on database II. The calcification-detection scheme identified 
74±16% of the actual calcifications and 34±48% false posi- 
tive detections. When these computer-detected signals were 
used as input to the cluster classifier, the area index equaled 
0.89 on a per patient analysis and 0.93 on a per cluster analy- 
sis, and the corresponding partial area indices were 0.28 and 
0.51. These results are compared to the values obtained when 
manually-identified signals were used as the classifier input 
in Table V. 

IV. DISCUSSION 

The calcification-detection scheme presented in this work 
had higher performance than the cluster-detection scheme in 
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TABLE II. The area A^ and partial area 090^^ under the ROC curves obtained on a per patient and on a per 
cluster basis, on database I, when the input of the classification scheme is given by manual identifications and 
by the cluster-detection scheme (± indicate standard deviations). 

Per patient Per cluster 

Classifier input A;                                      0.90^2 A^                        o.so^z 

Manually 
Cluster-detection 

0.92 ± 0.04            0.82 ± 0.08 
0.81 ± 0.06            0.33 ± 0.16 

0.83 ± 0.04            0.48 ± 0.09 
0.79 ± 0.05            0.29 ± 0.10 

the task of automatically identifying individual calcifications. 
Compared to the perfonnance of the latter scheme 
(TPD,.=55% and FPDj=20%), the proposed calcification 
detection scheme achieved TPD^ values between 81% and 
66% while FPD^ remained below 20%, when 3.6^k^6.0 
(Fig. 2). For k above 5.2 the change in performance was only 
slight, and the TPD^ and FPD^ values remained around 66% 
and 7%, respectively. This was a consequence of the local 
thresholding that guaranteed the detection of a minimum 
number of signals Sn,in, regardless of the magnitude of k. 
The detection performance achieved on the independent da- 
tabase with )k=3.4 (TPD,=74%, FPD^=34%) was slightly 
lower than the result obtained with the same k value on 
database 1 (Fig. 2). 

The detection performance decreased with an increasing 
number of calcifications. For example, for database I and k 
=3.2, the average true-positive and false-positive detection 
rates were 95% and 14%, respectively, for class 1 clusters. 

86% and 24%, respectively, for class 2 clusters, and 83% and 
55%, respectively, for class 3 clusters. For database II and 
ife=3.4, the true-positive detection rate was 100% and the 
false-positive detection rate was 3% for class 1 clusters, 
while the respective rates were 79% and 17% for class 2 
clusters, and 72% and 40% for class 3 clusters. These differ- 
ent performances are related to the global thresholding pa- 
rameters as explained later. 

It should be noted that the cluster-detection scheme is 
optimized for the detection of clusters and not of individual 
calcifications, hence the reason for the implementation of an 
intermediate step to localize individual calcifications more 
accurately with the calcification-detection scheme. This more 
accurate localization is essential in the feature extraction pro- 
cess that generates the input to the A^fN so as not to degrade 
the classifier performance. In fact, the results indicate that 
high fractions of false-positive signals or low fractions of 
true-positive signals produce lower performance than those 
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FIG. 3. The area A^ and partial area 
09(y4j indices obtained on database I 
when the classifier input is provided 
by the calcification-detection scheme 
are shown as a function of the thresh- 
old parameter k. The A^ and 0.90A2 val- 
ues obtained when manual identifica- 
tions (—) and when the cluster- 
detection scheme (—) are used 
instead, are included for comparison, 
(a) Aj, per patient analysis, (b) o.mAz • 
per patient analysis. (c)Aj, per cluster 
analysis, (d) o.mAz < P^r cluster analy- 
sis. 
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FIG. 4. ROC curves obtained on database I (a) on a per patient basis and (b) 
on a per cluster basis, when the input of the classification scheme is given by 
manual identifications (curve A), by the calcification-detection scheme with 
k=3.2 (curve B), and by the cluster-detection scheme (curve C). 

obtained with manually marked calcifications. In particular, 
when the cluster-detection scheme provided the input of the 
classification scheme, the performance of the latter was 
lower than that obtained when manual detections were used 
(Table II). This degradation in performance was due to the 
incorrect detection of individual calcifications -55% TPDj 
and 20% FPDj—that affected the features used by the ANN 
to classify the clusters. 

When the calcification-detection scheme was used to 
identify the calcifications, the classification performance de- 
pended on the operation point of the detection scheme (Fig. 
3). For 3.0 «it«4.0, i.e., for (TPD^, FPD^) pairs between 
(0.87, 0.60) and (0.77, 0.12), the classifier performance did 
not substantially change. This agreed with Ref. 21, where it 
is reported, for the same database, that when using composite 
computer-detected calcifications the classifier performance 
remained     approximately     constant     for    TPDj>40% 

(FPDj=0%) and for FPD,<50% (TPD,=42%). It should be 
noted that in that study the false-positive detection values 
were always below 50%, as opposed to this work where a 
wider range of values was analyzed. Higher or lower values 
of k resulted in poorer performance of the classifier. This is 
clearer for k < 3.0, when FPDj increased more rapidly, than 
for Jt>4.0, when the calcification-detection performance var- 
ied more moderately with low FPDj values. 

It should be noted that in Figs. 3(a) and 3(c) for 
3.0«it=s4.0, both patient- and cluster-based A^ values are 
close to the respective values obtained by using manual iden- 
tifications, and higher than the results obtained from the 
cluster-detection scheme. In the same range of k, the per 
patient partial area indices o.9(Az [Fig- 3(b)] were less than 
the corresponding value of manual identifications but well 
above the value obtained from the cluster-detection scheme. 
However, the cluster-based O.PQAJ [Fig. 3(d)] was close to the 
value obtained from the cluster-detection scheme. 

In fact, the patient- and cluster-based area indices A^ val- 
ues were not significantly different from the values obtained 
with manual identifications (Table III). However, as can be 
appreciated in Fig. 4, the ROC curves obtained by using the 
calcification-detection scheme crossed the ROC curves of 
manual identifications in such a way that the A^ indices did 
not substantially differ but the Q.QOAJ, values did. The partial 
area index 0.90^ z was not significantly different from the 
value corresponding to manual identifications only for 
jk=3.2, 3.4, 3.6, and 4.0 in the per patient analysis. These k 
values correspond to detection performances, expressed as 
(TPD,, FPD,) pairs, of: (0.85, 0.40), (0.83, 0.27), (0.82, 
0.20), and (0.77, 0.12), respectively. In the per cluster analy- 
sis, the partial area values were always significantly different 
from the manual identification value. Similar results were 
obtained on the independent database II (Table V). The 
patient- and cluster-based A^ indices did not differ signifi- 
cantly from the values obtained with manual identifications, 
and the partial area index 0.90^2 was not significantly differ- 
ent in the per cluster analysis. 

The differences between the per patient and per cluster 
performances observed in Fig. 3 arise as a consequence of 
keeping the maximum malignancy rating of all clusters as- 
sociated with the same patient in the per patient analysis 
(Sec. HE). When there is more than one cluster per patient, 
this can result in an equal or improved classification perfor- 
mance in malignant cases, and in an equal or worse perfor- 
mance in benign cases. For instance, in database I, where 
there is an average of 2 clusters per patient, the differences 
between the per patient and per cluster classification results 
when manually-identified calcifications were used (Table II), 
can be explained by analyzing the average ANN outputs for 
benign and malignant cases. In the per cluster analysis the 
average ANN output was 0.66 for malignant clusters and 
0.30 for benign ones, while in the per patient analysis the 
respective values were 0.78 and 0.38. The standard devia- 
tions of the ANN outputs in both benign and malignant cases 
were comparable in the per cluster and per patient analyses. 
Therefore, in the per patient analysis there was less overlap 
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TABLE III. The area A, and partial area o.giAz indices obtained on database I (a) by using manually-identified 
calcifications and (b) by using the calcification-detection scheme, p-values were calculated with CLABROC. 

A I 

p-value 

0.90^2 

k (a) (b) (a) (b) p-value 

Per patient 
2.0 0.92 0.84 0.077 0.82 0.58 0.005 

2.6 0.92 0.89 0.233 0.82 0.56 0.005 
3.0 0.92 0.91 0.558 0.82 0.68 0.013 

3.2 0.92 0.92 0.907 0.82 0.72 0.052 

3.4 0.92 0.92 0.774 0.82 0.70 0.066 

3.6 0.92 0.91 0.815 0.82 0.66 0.054 

3.8 0.92 0.92 0.608 0.82 0.68 0.043 

4.0 0.92 0.92 0.855 0.82 0.71 0.077 

4.8 0.92 0.91 0.451 0.82 0.65 0.011 

6.0 0.92 0.89 0.305 0.82 0.63 0.009 

Per cluster 
2.0 0.82 0.78 0.121 0.48 0.29 0.002 

2.6 0.82 0.80 0.577 0.48 0.20 <0.001 

3.0 0.82 0.83 0.636 0.48 0.26 0.001 

3.2 0.82 0.83 0.979 0.48 0.31 0.005 
3.4 0.82 0.83 0.920 0.48 0.28 0.003 
3.6 0.82 0.80 0.248 0.48 0.18 <0.001 

3.8 0.82 0.80 0.286 0.48 0.24 0.001 

4.0 0.82 0.81 0.430 0.48 0.27 0.003 

4.8 0.82 0.80 0.186 0.48 0.28 0.030 

6.0 0.82 0.80 0.155 0.48 0.31 0.016 

between the two distributions than in the per cluster analysis, 
and as a consequence the classification performance im- 
proved. In database II, where there is an average of 1.8 clus- 
ters per patient, when manually-identified calcifications were 
used (Table V), there was practically no difference between 
the per patient and per cluster A^ and o.9(Az indices. In this 
case, the average ANN output for benign cases increased 
from 0.31 (per cluster) to 0.36 (per patient), and the average 
ANN output for malignant cases increased from 0.66 (per 
cluster) to 0.71 (per patient). Therefore the difference be- 
tween the means of the two distributions did not change 
between the per cluster and per patient analyses and as a 
consequence there was no difference in performance. 

The fact that the partial area indices were consistently 
lower for computer identifications than for manual ones, 
could be explained by analyzing the calcification-detection 
scheme performance for benign and malignant clusters sepa- 
rately (Fig. 5). At each k value, FPD^ are higher for malig- 
nant than for benign clusters. For k^A.O, TPDj are similar 
for benign and malignant cases, but for k>4.0, TPDj are 
lower for malignant than for benign clusters. This means that 

the detection performance was lower in malignant than in 
benign cases. A similar trend was observed on the results 
obtained with database II (Sec. IIIC), for which TPD,=80% 
and FPD^=36% in benign cases as opposed to TPDj=69% 
and FPDs=31% on malignant cases. This difference in per- 
formance is related to two factors. First, malignant clusters in 
general contain more calcifications than benign ones. In par- 
ticular, for database I, the mean number of calcifications was 
28 for malignant clusters and 10 for benign ones, while for 
database II the respective mean values were 34 and 16. Sec- 
ond, the global thresholding kept a disproportionately larger 
number of signals when the estimated number of calcifica- 
tions, N, was large (Table I). This is reflected in the different 
detection performances across the cluster classes as noted 
previously. In database I, clusters with more than 10 calcifi- 
cations represented 92% of malignant clusters as opposed to 
31% of benign clusters, while in database II the respective 
fractions were 83% and 61%. Therefore, malignant clusters 
tended to yield both a higher number of false-positive signals 
and a higher FPD^ value, particulariy for k^4.0. For fc>4.0, 
the difference in FPDj values in malignant and benign clus- 

TABLE IV. A comparison between the sensitivity levels achieved by the ANN cluster classifier (per patient 
analysis), on database I, at 30% and 50% false positive fractions, when the classifier input is provided by 
manually-identified calcifications and by the calcification-detection scheme with k=3.2. The numbers in paren- 
thesis indicate 95% confidence intervals, p-values were calculated with CI-ABROC. 

TPF (%) at 30% FPF 
TPF (%) at 50% FPF 

Manual identifications 
Calcification-detection scheme 

it=3.2 

99.87 (71.11, 100) 
100 (86.05, 100) 

97.10 (74.56, 99.91) 
99.75 (85.59,100) 

p-value 

0.12 
0.09 
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TABLE V. The areaylj and partial area as^z obtained on database 11, by using manually-identified calcifications 
and by using the calcification-detection scheme with <:=3.4. 

A, O.SO^Z 

Calc- Calc- 
Manual detection Manual detection 
identification scheme p-value identification scheme p-value 

Per patient 
0.91 ± 0.02 0.89 ± 0.03 0.294 0.62 ± 0.08 0.28 ± 0.13 0.003 
Per cluster 
0.93 ± 0.02 0.93 ± 0.02 0.982 0.62 ± 0.07 0.51 ± 0.10 0.436 

ters was smaller than for i=s4.0, but TPD^ in malignant clus- 
ters were lower than in benign ones. As a consequence, clas- 
sification results were more degraded for malignant than for 
benign clusters, when compared to results obtained from 
manual identifications. This is reflected in the reduced partial 
area index (Tables III and IV). Therefore, by eliminating 
false-positive detections the classifier performance in the 
area of higher sensitivity could be improved further. This 
could be achieved by redefining the third cluster class (Table 
I) and adding a fourth class to avoid detecting an excessive 
number of signals when N>\Q. Further improvement could 
be obtained by introducing to the calcification-detection 
scheme a more efficient false-positive reduction step, such as 
a neural network that takes as input several signal features.^^ 

In spite of the lower partial area indices, for database I, at 
k=7)2, 99.75% cancers were correctly classified on a per 
patient basis, while 50% of benign cases were classified as 
malignant. Alternatively, at a false-positive fraction of 30%, 
a sensitivity of 97.1% was achieved. These sensitivity values 
are not significantly different from those obtained by using 
manual identifications (Table IV). 

A fully automated system could be realized by linking the 
cluster and calcification detection schemes, i.e., to identify 

100 

-Benign 
■Malignant 

5 10 100 250 
False Positive Detection (FPD,) (%) 

FIG. 5. FROC curves of the calcification-detection scheme for benign and 
malignant clusters (database I). The numbers indicate the value of k associ- 
ated with each point. 

the cluster with the cluster-detection scheme and then to 
identify the calcifications in that cluster with the 
calcification-detection scheme. The cluster location and size, 
and the number of calcifications in the cluster will be pro- 
vided by the cluster-detection scheme. However, since the 
cluster-detection scheme is not optimized for the detection of 
individual calcifications, this information might not be cor- 
rect. This needs to be taken into account and compensated 
for if the computer schemes are to be linked. The implemen- 
tation of a fully-automated system for the detection and clas- 
sification of clustered microcalcifications is part of our future 
work. 

Ideally, a fully automated system would be best suited for 
clinical purposes. However, automated detection schemes do 
not have 100% sensitivity. Furthermore, commercial systems 
are designed to detect cancer, not necessarily suspicious be- 
nign lesions. Therefore, there will be calcification clusters 
that are not detected by the computer, but that look suspi- 
cious to the radiologists. In those situations an interface is 
needed so that the radiologist can indicate to the computer a 
suspicious region to analyze. We believe that our interface is 
less burdensome than requiring the radiologist to identify all 
calcifications in the cluster and it produces more accurate 
results than segmenting the ROI without the approximate 
number of calcifications in the cluster. We do not feel that it 
will be difficult for a radiologist to indicate one of four dif- 
ferent categories for the number of calcifications in the clus- 
ter. The radiologist does not have to count the exact number 
of calcifications, since the categories are fairly broad. We are 
currently conducting a study to determine the effect on the 
classifier's performance of inaccurately assigning a category. 

Since the accuracy of classification of a mass or mass-like 
lesion depends on the accuracy of the segmented lesion, im- 
provements in the segmentation of the lesion should improve 
the classification result.^^ A priori information could be used 
to improve the segmentation. For example, the approximate 
size and information on shape (round, oval, lobular, or ir- 
regular), margin (circumscribed, microlobulated, obscured, 
indistinct, or spiculated), as well as the local breast density 
could be used to improve the segmentation, in a similar fash- 
ion to what we have described in this paper for microcalci- 
fications. The a priori information could come from a radi- 
ologist, for example, using a softcopy interface or from an 
initial detection scheme. 

In conclusion, we have shown that by using a priori in- 
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formation about the cluster, a higher percentage of individual 
microcalcifications can be identified. By doing so, classifica- 
tion of the cluster (benign versus malignant) can be done 
more accurately and at a level comparable to the result if all 
the microcalcifications were identified manually. 
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Abstract. The effect of the R2 ImageChecker computer-aided detection system 
was evaluated in a low-volume mammography clinic in the suburbs of Chicago. 
Prompts from the ImageChecker resulted in an additional 1.0% of patients 
being recalled for additional imaging while increasing the yield for early 
detection of impalpable breast cancer by 5.2% over a 24 month period. Cancer 
detection rates before and after installation of the computer-aided detection 
system were not statistically different. 

1. Introduction 

It is well documented that present generation computer-aided detection (CAD) 
devices in mammography can detect breast cancers that are visible retrospectively on 
mammograms but that were not reported by the original interpreting radiologist [1,2]. 
The utility of CAD devices has now also been evaluated prospectively in screening 
centers [3,4]. We report our experience with the R2 ImageChecker at a small imaging 
clinic doing approximately 10 to 12 mammograms a day. 

2. IVIaterials and IMethods 

The study described here was performed after approval by, and under supervision 
of, the applicable Institutional Review Board. The R2 ImageChecker was installed at 
Grant Square Imaging in the suburbs of Chicago on April 1, 1998. A number of 
conventional mammography practice parameters were monitored between January 1, 
1997 and March 31, 2000 in order to assess the effect and utility of the 
ImageChecker. Additionally, commencing on August 1, 1998, radiologists were 
asked to record cases in which patients were recalled to the department for additional 
imaging as the result of CAD prompts. 

The volume of mammography at the clinic averaged between 10 and 12 cases per 
day throughout the course of the study. A single radiologist staffed the site and, in 
addition to mammograms, also interpreted plain film studies, as well as computed 



tomography, nuclear medicine and ultrasound examinations with the total case 
volume being approximately 40 studies per day. The volume and mix of the 
examinations was such that radiologists at the clinic were about "half as busy" as at 
other sites staffed by the radiology professional group. Four radiologists read more 
than 95% of the mammograms at the clinic during the 39 month study period. 

It was the policy of the clinic that no added charges be assessed for additional 
mammography views. The technologists therefore routinely reviewed the cases 
before patient discharge and brought potential abnormalities to the radiologist's 
attention who then decided whether additional views might be needed before the 
examination was considered complete. This practice style did not change after 
installation of the ImageChecker, with technologist review coming before the films 
were digitized for CAD analysis. The approach described tended to reduce 
significantly the percentage of patients "called back" to the department on a separate 
date for additional views. It also reduced the potential for observational oversights 
due to a single reading by one radiologist. 

3. Results 

Between August 1, 1998 and March 31, 2000, 51 of 5359 (1.0%) patients were 
called back to the department based on prompts by the ImageChecker. An 
independent assessment of the average recall rate for the three radiologists who 
interpreted examinations throughout the entire study period showed an increase from 
3.1% between January 1, 1997 and March 31, 1998 (before installation) to 4.2% 
between the August 1, 1998 and March 31, 2000 (p=0.037; Pearson Chi-square test 
with Yates correction). As described above, the practice style at the clinic tended to 
reduce recall rates appreciably. 

The 51 additional patient recalls resulted in 6 biopsies, one of which yielded a 
malignant diagnosis. This represented an increase of 5.2% (1/19) in the yield of 
impalpable cancers at the clinic during the monitored period. 

No statistically significant difference in the detection rate for impalpable breast 
cancer was noted before and after ImageChecker installation. Between January 1, 
1997 and March 31, 1998 the detection rate was 4.5/1000 (13/2866). Between April 
1,1998 and March 31, 2000 the detection rate was 3.8/1000 (24/6345), (p=0.73). The 
positive predictive values for biopsy before and after installation were 38% and 30% 
respectively (p=0.55). In cases for which T staging was available, the minimal cancer 
detection rate (percentage Tis, Tla and Tib lesions) was 50% (4/8) before installation 
and 75% (9/12) after installation (p=0.36; 2-tailed Fisher exact test). 



4. Discussion 

The practice setting in this study is one that could be reasonably expected to 
minimize the benefits of computer-aided detection. The radiologists reviewed a 
relatively small number of cases every day and did so in a rather relaxed environment. 
Additionally, the technologists prescreened examinations for potential abnormalities 
in order to reduce recall rates. In so doing, they often served effectively as second 
readers, an approach taken at some institutions to improve the sensitivity of screening 
mammography [5]. It is therefore of interest that the ImageChecker alerted 
radiologists to abnormalities, overlooked on original film review, but warranting 
patient recall in nearly 1.0% of the cases. Further, biopsy recommendations resulted 
in more than 10% of the recalled patients (6/51). These results suggest that even in a 
favorable practice environment, radiologists do not perceive all findings that, 
retrospectively, can be considered worthy of concern. 

The question does arise whether CAD information is as beneficial in a low-volume 
reading situation. In particular, one could postulate that CAD prompts might make 
the unhurried radiologist hyperattentive to borderline findings that ultimately prove to 
be benign. It has been shown that such borderline findings, at least when identified 
by experts, almost never are the result of malignant lesions [6]. The percentage of 
patients additionally recalled due to CAD prompts in this study was approximately 
1.0%, a value similar to that reported by Freer and Ulissey. At the same time, the 
incremental increase in yield for breast cancer detection was much less in this study, 
i.e., 5%, than the nearly 20% reported by Freer and Ulissey in a study carried out in a 
much busier mammography center. Given the relatively small number of cancer 
cases involved, however, the difference is not statistically significant (p=0.27; 2-tailed 
Fisher exact test). Radiologists using CAD information in any setting should 
nevertheless be aware of the very low yield in the recall of borderline findings. 

There are obvious difficulties in arriving at statistically meaningful observations in 
low-case-volume practice. We were fortunate to have a very stable practice 
environment for the 39 month study period during which slightly more than 9000 
examinations were performed. Given the very low incidence of breast cancer, 
however, our results fail to prove or disprove the benefit of CAD in terms of the most 
reliable indicator, i.e. absolute detection rates at screening. Such a benefit, if any, 
may be difficult to prove satisfactorily at centers that perform a low volume of the 
examination. 

5. Conclusions 

The utilization of the R2 ImageChecker at a low volume mammography center 
resulted in an apparent small (5.0%) increase in the detection of impalpable breast 
cancer while an additional 1.0% of patients were recalled for additional imaging as a 
result of CAD prompts. The benefits of CAD at clinics doing a low volume of 
mammography may be less than those obtained at high-volume centers. 
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Abstract. Computer-aided diagnosis schemes for the detection and 
classification of microcalcification clusters have been developed at our 
laboratory. The classification scheme takes as input the location of each 
microcalcification present in the cluster. The cluster-detection scheme is 
optimised for the detection of clusters and identifies in average half of the actual 
calcifications present in each cluster. Therefore, the input of the classification 
scheme was generated by manually identifying the individual calcifications. In 
this work we present a calcification-detection scheme that acts as an interface 
between the cluster-detection and classification programs in order to avoid 
manual identification of each calcification. The new scheme analyses the region 
that contains a cluster previously identified by a radiologist or by an initial 
computer scheme, and requires as input the cluster location and size and the 
approximate number of calcifications in the cluster. This a priori information is 
used to identify the individual calcifications more accurately. 

1. Mammogram Databases 

We used two independent mammogram databases. Database I contained 107 
microcalcification clusters (40 malignant, 67 benign) and Database II contained 246 
microcalcification clusters (123 malignant, 123 benign). All films were digitized with 
a grey-scale resolution of 10 bits and a pixel size of 0.1 mm/pixel. A researcher 
manually identified the microcalcifications present in each film. A region of interest 
defined by the cluster bounding box plus a 55-pixel margin surrounding it was 
extracted for each cluster. We used Database I to determine the appropriate 
parameters of the calcification-detection scheme, and Database II for evaluation. 



2. Calcification-detection Scheme 

The scheme takes as input a region of interest that contains a cluster of 
microcalcifications and the class to which the cluster belongs according to its number 
of calcifications, N. Three classes were used [1]: class 1 if AT < 6, class 2 if 6 s AT £ 10, 
and class 3 if N > 10. 

2.1 Preprocessing 

The calcifications were enhanced with a Difference of Gaussians (DoG) filter. The 
Gaussian kernels of the DoG filter had standard deviation values of 1.1 and 1.4 and 
kernel sizes of 7x7 and 9x9 pixels respectively [2]. 

2.2 Segmentation Using a Priori Information 

The enhanced potential calcifications were segmented by global and local iterative 
thresholding operations that used a priori information about the approximate number 
of calcifications in the cluster. First, a global threshold based on the histogram of the 
image segmented an initially large number of candidate calcifications. The value of 
the global threshold was iteratively changed until a certain number of potential 
calcifications, which was previously defined as a function of the cluster class, were 
segmented. Second, a local thresholding reduced false-positive detections and 
maintained a minimum number of potential calcifications, which also depended on 
the cluster class. The local threshold value was calculated in regions of 100x100 
pixels, centred on each previously identified potential calcification, and its value was 
set as A* + k*a, where /x and a are the mean and standard deviation values of the 
region, and A: is a variable parameter. If necessary, the value of k was iteratively 
decreased 0.01 until the number of segmented signals was above the predetermined 
minimum value. The output of the calcification-detection scheme consists of the 
locations of the detected signals and can be used as input to the classification scheme. 

3. Results and Conclusions 

The performance of the calcification-detection scheme was significantly higher 
than the performance of the cluster-detection scheme in the task of identifying 
individual calcifications (Fig. 1). For k = 3.2, 85% of the actual calcifications were 
identified in Database I (Fig. 1). In the independent Database II, 77 % of the 
calcifications were detected at the same operating point. When these computer- 
detected calcifications were input to the cluster classifier [3], the classification 
performance was comparable to that obtained by using manually-identified 
calcifications (Table 1). In this way, with a minimal human intervention the cluster- 
detection and classification schemes can be linked by the calcification-detection 
scheme. In a completely automated system, i.e. when the output of the cluster- 



detection scheme constitutes the input of the calcification-detection scheme, the 
performance of the cluster classifier is degraded (for Database I, per patient A =0.61 
and per cluster Aj.=0.75) as a consequence of the underestimation of the number of 
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Fig. 1. FROC curve of the calcification-detection scheme for Database I. The 
different numbers correspond to the value of the local threshold variable parameter k. 
For comparison, the performance of the cluster-detection scheme for the detection of 

individual calcifications is also indicated on the plot. 

Table 1. Area index A^ values obtained by using as input of the cluster-classifier manually- 
Identified calcifications and computer-identified calcifications with the calcification-detection 
scheme. 

Database I Database II 

Classifier Input                        A, 4 
Per patient  Per cluster 

Manual                  0.92            0.82 
Calc-detect. Scheme         0.92            0.83 

Per patient   Per cluster 
0.91            0.93 
0.85            0.89 
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ABSTRACT 

In developing a computer technique to classify clustered microcalcifications as malignant or benign, we previously 
indicated manually the location of all individual calcifications to the computer and found the computer to be more 
accurate than radiologists. In this study, we investigate whether radiologists can be asked to provide minimal input to 
the computer and obtain consistent computer classification results. Radiologists were instructed to draw a rectangle that 
enclosed all calcifications, and indicate the approximate number of the calcifications (either <6, 6-10,10-30, or >30). 
The computer used these two pieces of information to detect the individual calcifications and, subsequently, to classify 
the calcifications as malignant or benign based on only those calcifications detected by the computer. We showed at the 
2002 RSNA conference 18 cases together with standard and magnification view mammograms to 38 self-reported 
breast-imaging radiologists (12 of whom read all 18 cases). The standard deviation in the location of their rectangles 
(averaged over all cases) was approximately 3 mm, the standard deviation in the linear dimension of the rectangles was 6 
mm, and the standard deviation in the computer-estimated likelihood of malignancy was 17%. These results indicate 
that radiologists are able to provide consistent input to the computer, which in turn produces reasonably consistent 
computer classification results. 

Keywords: computer-aided diagnosis, classification, clustered microcalcifications, reader variability 

1.   INTRODUCTION 

One of the challenges for mammography is that a large number of biopsies are performed on benign lesions because 
radiologists are not able to differentiate them from malignant lesions. Previous research demonstrates that computer- 
aided diagnosis holds the potential to help radiologists reduce the number of biopsies of benign lesions while 
maintaining or even increasing the correct diagnosis of malignant lesions [1-4]. Previous work has concentrated on 
automated computer analysis of breast lesions. However, in the setting of a diagnostic examination, the radiologist 
knows exactly where the lesion is in the mammogram. The radiologist may want to query the computer after providing 
the exact location of the lesion to the computer. The purpose of this study was to investigate radiologists' variability in 
locating the lesions and any dependence in the results of the computer analysis on such variabilify. 

2.   MATERIALS AND METHODS 

2.1.        Computer classification of calcifications as malignant or benign 

The objective of our technique was to use a computer to analyze calcifications in mammograms automatically, to 
classify them as malignant or benign, and subsequently to make the results of this computer analysis available to 
radiologists as an aid to their diagnostic decision-making. The technique has been described in detail elsewhere [1,2, 5]. 
Briefly, the computer extracts eight image features from digitized mammograms that describe the size and shape of the 
calcification cluster, the average and variation in size (including contrast) of the individual calcifications, and the degree 
of shape-irregularity of the individual calcifications. The computer then uses an artificial neural network to merge these 
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image features into a single output, and subsequently converts this output to an estimate of the likelihood of malignancy. 
A prerequisite of this technique is the knowledge of the locations of every individual calcification, from which the image 
features are to be calculated. 

2.2. Computer detection of individual calcifications 

We recently developed a computer technique to detect individual calcifications based on certain a priori information 
provided by the radiologist, for the purpose of facilitating subsequent computer classification of the calcifications as 
malignant or benign without requiring manual identification of the individual calcifications [6, 7]. The a priori 
information consisted of a region of interest (ROI) that encompasses the calcifications and an approximate number of the 
calcifications in four categories: <6, 6-10,10-30, and >30. This approach may be appropriate in the settings of 
diagnostic mammography in which the radiologist knows exactly where the calcifications are, and can quickly count 
their number. Note that this technique, which may be referred to as the "calcification detection technique," is different 
from other computer detection techniques that may be referred to as "cluster detection techniques" in that the purpose of 
this technique is to detect the individual calcifications, rather than to detect the lesion or the group (cluster) of 
calcifications. We have shown previously that use of this technique can produce comparable computer classification 
performance of malignant and benign calcifications as manual identification of the calcifications, even though the 
computer does not detect all calcifications, and does include false-positive signals. 

With the use of the "calcification detection technique," the computer classification of malignant and benign 
calcifications and the computer-estimated likelihood of malignancy become potentially dependent on the a priori 
information provided by the radiologist. The ROI defines the area in a mammogram from which the computer detects 
calcifications. If, on one hand, the ROI is too small, then computer classification will be based on only some of the 
calcifications in a cluster. If, on the other hand, the ROI is too large, then computer classification will be based on a 
collection of "calcifications" that may include many false-positive signals. Similarly, the number of calcifications 
defines how many calcifications the computer will detect and on which computer classification will be based. If the 
number is too small, then, again, computer classification will be based on only some of the calcifications in a cluster. If 
the number is too large, then computer classification will be based on a collection of "calcifications" that include many 
false-positive signals. Therefore, the extent to which radiologists can provide the a priori information accurately and 
consistently, and the extent to which computer classification is dependent on the a priori information need to be 
evaluated. 

2.3. A computer-user interface 

For the purpose of this study, a computer-user interface was designed, and is shown in Fig. 1. The purpose of this 
computer-user interface was to facilitate a radiologist to provide the a priori information to the computer, watch the 
computer perform its analysis on-line (detecting calcifications and classifying the calcifications as malignant or benign), 
and review the results of the computer calculation. The information shown in Fig. 1 appears in stages, rather than all at 
once as shown in the figure. Initially, only the mammogram is shown, and the radiologist is asked to draw a rectangular 
box that is large enough to enclose all suspect calcifications that need to be targeted in a stereo core biopsy but not large 
enough to indicate a broad general area. The radiologist is also asked to indicate an approximate number of 
calcifications and is warned that computer calculation may be sensitive to the calcification numbers indicated. 
Subsequent to computer calculations, the radiologist is given opportunities to alter the ROI and the calcification number 
count and have the computer repeat its calculations. After entering the a priori information, the radiologist is asked to 
enter Bl-RADS assessment in terms of the need for biopsy before and after reviewing the results of computer 
calculations. Results of the computer calculations are shown in two forms. An annotated ROI is shown in the lower- 
right comer with black dots indicating the "calcifications" detected by the computer (which might also include false- 
positive signals). The radiologist could use this ROI to assess whether the computer has detected all calcifications and 
whether the computer detection has included false-positive signals. The computer-estimated likelihood of malignancy is 
shown in the upper right comer. Results are shown separately for the two views of the mammogram. At the conclusion 
of each case, the radiologist reviews the histological diagnosis. In addition and not shown in Fig. 1, the final display also 
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Figure 1. An example of the computer-user interface for the radiologist to provide a priori 
information to the computer and to review results of the computer calculations. Information 
is displayed in stages, rather than all at once. Sec text for description of the sequence of 
display. 

includes information on the ROIs drawn by other radiologists, standard deviations in the computer-estimated likelihood 
of malignancy, and standard deviations in the BI-RADS assessments, if that information is available. 

2.4.        Study design and data collection 

We conducted an experiment as part of an Educational Exhibit at the 88th Scientific Assembly and Annual Meeting of 
the Radiological Society of North America, Chicago, IL, 1-6 December 2002 [8]. Using the interfitce described above, 
we showed 18 cases of mamniograms that consisted of a lateral view and a CC view containing calcifications. To 
provide sufficient diagnostic information, we also provided high-quality copy films mounted on a film viewer of the 
standard views of both breasts and magnification views of the calcifications. The readers were instructed to review the 
films.  Durmg the conference, 38 self-described radiologists who conduct breast imaging more than 10% of their clinical 
practice read at least some cases, and 12 radiologists read all 18 cases. We recorded the ROIs and the estimated 
calcification numbers provided by the radiologists, and the results of computer calculations based on the radiologists' 
input. 
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Figure 2. An example of the ROIs drawn by 13 radiologists in the MLO (left) and CC (right) 
view mammograms of a case diagnosed as fibroadenoma with coarse stromal calcifications, 
fibrocystic changes. 

3.    RESULTS 

Radiologists were consistent in providing the ROIs and in estimating the number of calcifications. The standard 
deviation in the center location of the ROIs was 3.0 mm averaged over the horizontal and vertical directions. This was 
averaged over the two images in each case, and averaged over all cases. The standard deviation in the width and height 
of the ROIs averaged 5.8 mm, or 40% of the width or height. In no case did all the radiologists agree on one number 
category for the calcifications in each image. In most cases, the radiologists' input spanned two number categories. In 
eight cases, the radiologists' input spanned three categories, but only 1-3 radiologists selected the third number 
category—therefore, this was uncommon. In only one case—in which the calcifications were extremely difficult to see 
even on the film—did the radiologists select all four number categories. 

The computer calculation was influenced by the variability in the a priori information provided by the radiologists. The 
average standard deviation in the number of detected calcifications was 10, and this was averaged over all images and 
over all cases. The average relative standard deviation in the number of detected calcifications was 38%. The average 
standard deviation in the computer-calculated likelihood of malignancy was 17%, over all images and over all cases. 

Figure 2 shows an example case of the ROIs drawn by 13 radiologists. The average standard deviation in the center 
position of the ROIs was 1.3 mm and the average standard deviation in the width and height of the ROIs was 4.7 mm. 
Note that much of the variability is contributed from I or 2 ROIs that are appreciably larger than others. Similar 
observation is made in other cases, except that it tended not to be the same radiologists who drew larger ROIs in each 
case. The computer-estimated likelihood of malignancy was I3±5% for the MLO view and 10±4% for the CC view. 
Therefore, the computer calculation was not veo' sensitive to the variability in the size of the ROIs, or at least less so 
than it was sensitive to variability in the calcification number categories selected by the radiologists. Figure 3 shows 
another example image of the ROIs drawn by 38 radiologists. The average standard deviation in the center location of 
the ROIs was 1.4 mm and the average standard deviation in the width and height of the ROIs was 5.3 mm. These values 
arc not dissimilar to the corresponding values in the previous case. However, the computer-estimated likelihood of 
malignancy was 67±22%. The larger variation in the computer calculations was not caused by the two largest ROIs. 
Rather, it was caused by inputs from 3 radiologists who indicated that the number of calcifications was 6-10 in this 
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Figure 3. The MLO view of a case diagnosed as DCIS, cribriform and solid type, low to high 
grade, with focal comedo necrosis and calcifications. 

image, and by input from another radiologist who drew the smallest ROI in the center. If these four inputs were 
eliminated, then the computer-estimated likelihood of malignancy would have been 74±7%. 

4.    DISCUSSION AND SUMMARY 

The task of selecting an ROI and estimating the approximate number of calcifications is not a task that radiologists 
routinely perform in diagnostic examinations. The results from our experiment indicate that radiologists are able to 
select ROls in a consistent way, with only minimal written instructions. This, in part, is because in their clinical 
practice, radiologists need to estimate the spatial extent of the calcifications, which is akin to selecting an ROI. 
However, some radiologists have the tendency to select overiy large ROIs, perhaps with the thinking of "being on the 
safe side," or perhaps not realizing the need to be precise in selecting the ROIs. The consistency in selecting the ROIs 
can possibly increase with more eleariy defined instructions. Our results also indicate that radiologists were reasonably 
consistent in estimating the number of calcifications. However, the computer calculation was more sensitive to 
variability in the calcification number categories than it was to variability in the ROIs. Radiologists do not routinely 
count the precise number of calcifications. In our study, they appeared not to appreciate the importance of this estimate 
for the computer-calculated likelihood of malignancy. Therefore, a danger exists that a radiologist might estimate the 
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number of calcifications haphazardly, and subsequently misconstrue an incorrect computer-calculated likelihood of 
malignancy that was based on the incorrect estimate of the number of calcifications. The solution to this problem is to 
device a way to eliminate the dependence of the computer-calculated likelihood of malignancy on the user-estimated 
number of calcifications. Despite various sources of variability in the input provided by radiologists and despite any 
possible exaggeration of the variability because of the RSNA conference environment in which we conducted the 
experiment, the computer-calculated likelihood of malignancy was reasonably consistent. Therefore, we are optimistic 
that this approach of using a computer to detect calcifications and to classify them as malignant or benign can eventually 
become a useful clinical tool to radiologists. 
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ABSTRACT 

We are developing an automated computer technique to describe calcifications in mammograms according to the BI- 
RADS lexicon. We evaluated this technique by its agreement with radiologists' description of the same lesions. Three 
expert mammographers reviewed our database of 90 cases of digitized mammograms containing clustered 
microcalcifications and described the calcifications according to BI-RADS. In our study, the radiologists used only 4 of 
the 5 calcification distribution descriptors and 5 of the 14 calcification morphology descriptors contained in BI-RADS. 
Our computer technique was therefore designed specifically for these 4 calcification distribution descriptors and 5 
calcification morphology descriptors. For calcification distribution, 4 linear discriminant analysis (LDA) classifiers 
were developed using 5 computer-extracted features to produce scores of how well each descriptor describes a cluster. 
Similarly, for calcification morphology, 5 LDAs were designed using 10 computer-extracted features. We trained the 
LDAs using only the BI-RADS data reported by the first radiologist and compared the computer output to the 
descriptor data reported by all 3 radiologists (for the first radiologist, the leave-one-out method was used). The 
computer output consisted of the best calcification distribution descriptor and the best 2 calcification morphology 
descriptors. The results of the comparison with the data from each radiologist, respectively, were: for calcification 
distribution, percent agreement, 74%, 66%, and 73%, kappa value, 0.44, 0.36, and 0.46; for calcification morphology, 
percent agreement, 83%, 77%, and 57%, kappa value, 0.78, 0.70, and 0.44. These results indicate that the proposed 
computer technique can select BI-RADS descriptors in good agreement with radiologists. 

Keywords: Mammography, computer-aided diagnosis, BI-RADS, microcalcifications, classification, linear 
discriminant analysis. 

1. INTRODUCTION 

Mammography is the only proven screening technique for detecting breast cancer in its early stages [1]. However, the 
analysis and interpretation of mammograms for the diagnosis of breast cancer are difficult tasks. When finding 
abnormal lesions on mammograms, radiologists often call the patient back for further diagnostic evaluations and 
frequently recommend a biopsy to avoid missing any breast cancer. Computer-aided diagnosis (CAD) systems have 
been developed to provide a second opinion to radiologists. These systems use computer vision and pattern recognition 
techniques to automatically detect and characterize abnormal lesions on mammograms. Although it has been reported 
that these systems are useful in reducing the error rate in mammographic screening [2, 3] and in lowering the biopsy 
recommendation rate for benign breast lesions [4-6], the detection sensitivity and differentiation of malignant from 
benign lesions need to be improved to provide maximum benefit to the radiologist and the patient. 

To further improve the accuracy in mammography reporting, the American College of Radiology designed a 
standardized lexicon: the Breast Imaging Reporting and Data System (BI-RADS) [7]. A few studies have demonstrated 
the potential of using this standard lexicon for both radiologists and CAD systems [8-10]. Hara et al. [11] proposed a 
technique to automatically determine the microcalcification distribution as described in BI-RADS and incorporated this 
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information into their current mammographic microcalcification classification technique. Ahhough the number of cases 
tested was small, they demonstrated a significant improvement of the microcalcification classification performance. 
However, the entire BI-RADS information has not yet been utilized in the CAD systems. 

For clustered microcalcifications, BI-RADS contains 5 calcification distribution descriptors and 14 calcification 
morphology descriptors. Incorporating the output of a computer system that automatically provides the calcification 
description according to the BI-RADS lexicon to the current CAD scheme can possibly improve its accuracy for the 
differentiation of benign from maUgnant clustered microcalcifications. We thus propose in this study a method that 
automatically outputs the calcification distribution descriptor and the calcification morphology descriptor as defined in 
BI-RADS. 

2. MATERIALS AND METHODS 

In this study, as for any pattern recognition problem, we first extracted features of the segmented calcifications. Two 
subsets of these features were retained that characterized at least one of the calcification distribution descriptors or at 
least one of the calcification morphology descriptors. Following this step, a classification scheme was designed that 
used several linear discriminant analyses (LDAs). The computer output consisted of one calcification distribution 
descriptor and two calcification morphology descriptors. The results were further compared to the radiologists' data in 
terms of percent agreement and kappa values. 

2.1 Database 
The database consisted of 90 cases of mammograms containing clustered microcalcifications. The mammograms were 
selected from patient files in the Department of Radiology at the University of Chicago. Ninety two per cent of them 
were composed of the two standard craniocaudal (CC) and medio-lateral oblique (MLO) views. These mammograms 
were digitized with a LUMISYS laser film scanner at a pixel size of 100 ^.m and 12-bit gray levels. A total of 172 
images were available for our study. The locations of the microcalcifications were identified manually to avoid 
incorporating false positives or missing any true calcifications in the subsequent analysis. 

Three expert radiologists reviewed our database and described the calcifications using the BI-RADS descriptors. The 
radiologists were allowed to report one calcification distribution descriptor and up to two calcification morphology 
descriptors because it was often difficult to describe calcification morphology with a single descriptor. In our study, the 
radiologists used only 4 of the 5 calcification distribution descriptors (grouped, Unear, segmental and regional), and 5 of 
the 14 calcification morphology descriptors contained in BI-RADS (punctate, amorphous, pleomorphic, fine linear 
branching, and coarse). The radiologist occasionally used the terms dystrophic and round. But because these were not 
apparently used in a consistent way and because the number of cases for each of these descriptors was small, we 
combined these cases with those reported as coarse. Figure 1 shows examples of the 5 calcification morphology 
descriptors reported by one radiologist. Histograms of the calcification distribution descriptors and calcification 
morphology descriptors rated by each radiologist on this dataset are shown in Figs. 2 and 3. The BI-RADS data 
reported by one of these three radiologists was used to train our method, and subsequently the BI-RADS descriptors 
reported by all three radiologists were compared to the computer output. 

(a) (b) (c) (d) (e) 
Fig. 1: Example images of the 5 calcification morphology descriptors reported by the radiologists (a) coarse, round and dystrophic, 
(b) punctate, (c) amorphous, (d) pleomorphic, and (e) fine linear branching calcifications. 
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Fig.   2:   Histograms   of the  calcification  distribution  descriptor  rated  by   3   expert 
mamniograpliers for a database of 90 cases of digitized mammograms. 
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Fig. 3: Histograms of the calcification morphology descriptor rated by 3 expert 
mammographers for a database of 90 cases of digitized maimnograms. The radiologists often 
reported two different BI-RADS descriptors per cluster; these two descriptors were included 
in these histograms. 

2.2 Methods 
A segmentation stage was first applied to extract microcalclfications on each manunogram. This stage was detailed in 
[12]. To avoid incorporating false positives and missing any calcifications during this segmentation stage, the locations 
of the calcifications on each mammogram were manually identified. Features based on the size and shape of the 
segmented calcifications, and the size and shape of the cluster were then extracted for further analysis [13]. A total of 
39 features were defined, but because of the limited number of cases in our data set, no automatic feature selection 
methods were used [14]. Based on the BI-RADS definitions and an intuitive understanding of the calcification 
distribution and morphology descriptors, we manually selected two subsets of features. The performance of these two 
sets of features is reported. 
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These two subsets of features were then used as input respectively to two separate sets of classifiers. The first set of 
classifiers was designed to select the most appropriate calcification distribution descriptor, and the second set of 
classifiers was for the calcification morphology descriptor. For the calcification distribution descriptor, 4 linear 
discriminant analysis classifiers were developed using the first subset of features based on the size and shape of the 
cluster, and were trained using the BI-RADS data reported by the first radiologist. Each LDA evaluated one of the BI- 
RADS calcification distribution descriptors against the others. For example, a LDA was defined to characterize regional 
calcification clusters from all other calcification distribution descriptors. To evaluate our method in an unbiased way 
with the data from the first radiologist, we used the leave-one-out technique, which consists of training on all cases 
minus one, and testing on the remaining case. These classifiers produced 4 calcification distribution scores (group 1) of 
how well each descriptor describes a cluster. A similar technique was used for the calcification morphology descriptors. 
Five LDAs were designed using the second subset of features based on the size and shape of the individual 
calcifications. These LDAs were also trained using the calcification morphology descriptors reported by the first 
radiologist. Because radiologists were allowed to report up to two calcification morphology descriptors, only the first 
reported descriptor, considered to be the most significant, was used to train the LDAs. Five calcification morphology 
scores (group 2) were produced by these LDAs. Receiver operating characteristic (ROC) analysis was then applied to 
evaluate the performance of each LDA, and areas under the ROC curves (A^) are reported. 

A final decision was made to determine the computer-identified BI-RADS descriptors. For calcification distribution, we 
selected the descriptor that corresponded to the maximum score from group 1 and from the two images in each case. 
For calcification morphology, two descriptors were determined and corresponded to the two highest scores from group 
2 and from the two images in each case. We then compared the computer-selected descriptors to the BI-RADS 
descriptors provided by each radiologist, in terms of percent agreement and the unweighted kappa. These measures of 
agreement were also computed for pairs of the 3 radiologists. 

3. RESULTS AND DISCUSSION 

The first stage of our proposed method consisted of the selection of two subsets of discriminant features. Based on the 
definition of the calcification distribution descriptors, 5 computer-extracted features were selected and consisted of the 
area of the microcalcification cluster, the perimeter, the ckcularity, and the mean and standard deviation of the distance 
between pairs of calcifications in the cluster. Figure 4 shows the performance of these features on an individual basis to 
discriminate each calcification distribution descriptor against all others that are available. Based on the definition of the 
calcification morphology descriptors, 10 computer-extracted features were selected and these consisted of the relative 
standard deviation of the calcification width, the mean thickness, the mean volume, the fi-action of calcifications with 
centroid outside the segmented calcification, the mean of the standard deviation of the shape index, the mean, the 
standard deviation, the first, and the second highest value of the relative standard deviation of the shape index, and the 
maximum of the ratio of the calcification perimeter to its area. Figure 5 shows the performances of these features on an 
individual basis to discriminate each calcification morphology descriptor against all others that are available. We 
constrained the study to these two subsets of features but will investigate other relevant features in the future in order to 
classify other calcification distribution and morphology descriptors that were not present in sufficient number in our 
database. 

These two subsets of selected features were used as input to a set of 4 and a set of 5 different LDAs to select the 
calcification distribution and morphology descriptors. Tables 1 and 2 show the performance of each LDA on the 
training and test sets. For calcification distribution, the highest performance was obtained for identifying the segmental 
and grouped descriptors. This could be related to the large number of cases contained in our dataset for these two 
descriptors. For calcification morphology, the highest performance was obtained for the classification of coarse 
calcification cases. This could be explained by the relative obvious difference in size and shape of this type of 
calcifications compared to the other ones. Further tests on an independent database will be required to test the validity 
of these results. 
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Fig. 4: Ai values of each individual feature in being used as a basis to identify one calcification distribution 
descriptor as the most appropriate for a given cluster. The features are: (1) the area of the microcalcification 
cluster, (2) the perimeter, (3) the circularity, (4) the mean and (5) standard deviation of the distance between 
pairs of calcifications in the cluster. 
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Fig. 5: Az values of each individual feature in being used as a basis to identify one calcification morphology 
descriptor as the most appropriate for a given cluster. The features are: (1) relative standard deviation of the 
calcification width, (2) mean thickness, (3) mean volume, (4) fraction of calcifications with centroid outside the 
segmented signal, (5) mean of the standard deviation of the shape index, (6) the mean, (7) standard deviation, (8) 
first and (9) second highest value of the relative standard deviation of the shape index, and (10) maximum of the 
calcification perimeter to area ratio. 

TABLE 1: Performance of the 4 calcification distribution LDAs on the training and test sets. 

Grouped Linear Segmental Regional 

rraining set 0.88 0.83 0.93 0.73 
Test set 0.85 0.76 0.91 0.64 

Table 2: Performance of the 5 calcification morphology LDAs on the training and test sets. 

Coarse Punctate Amorphous Pleomorphic Fine linear 
Training set 0.92 0.75 0.78 0.80 0.86 
Test set 0.82 0.68 0.70 0.71 0.74 

We compared the computer-provided BI-RADS descriptors to the BI-RADS data reported by the three radiologists. For 
calcification distribution, the results of the evaluation are detailed in Table 3 and indicate that the agreement between 
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computer-provided calcification distribution descriptor and the BI-RADS data provided by the three radiologists were 
similar. The kappa values, K=0 .44, K=0. 36, and K=0.46, demonstrate moderate agreement between the computer and 
each radiologist. For calcification morphology, two evaluations were made. The first evaluation consisted of using the 
two computer-provided calcification morphology descriptors and comparing them to the radiologists' BI-RADS data. It 
was considered to be a success when at least one of the two computer descriptors corresponded to one of the two 
descriptors reported by the radiologist. This evaluation is reported in Table 4 (A) and indicates that the computer output 
was somewhat close to the radiologists' descriptions of the calcification morphology. The kappa values, K=0.78, 

K=0.70, and K=0.44, demonstrate that the computer is in good agreement with the first two radiologists, and moderate 
agreement with the third radiologist. The second evaluation consisted of using the highest computer-provided 
calcification morphology descriptor and comparing it to the radiologists' data. It was considered to be a success when 
the computer-provided descriptor corresponded to one of the two descriptors reported by the radiologist. As shown in 
Table 4 (B), the kappa values, K=0.45, K=0.42, and K=0.15, demonstrate moderate agreement with the first two 
radiologists, and poor agreement with the third radiologist. This lower agreement means that two calcification 
morphology descriptors provided by the computer are needed to be consistent with the radiologists' interpretation of the 
mammograms. 

We also compared pairs of the three radiologists' BI-RADS data in comparison to the computer-provided BI-RADS 
descriptors. For calcification distribution, the resulting evaluation is detailed in Table 5. The kappa values, K=0.53, 

K=0.50, and K=0.37, demonstrate a moderate agreement. The computer output is thus consiste nt with the 
radiologists'interpretation of the calcification distribution on mammograms. For calcification morphology, as the 
radiologists were allowed to report up to two descriptors, we used a similar evaluation as the first evaluation for the 
computer. It was considered to be a success when at least one of the two descriptors reported by one radiologist 
corresponded to one of the two descriptors reported by another radiologist. The results are detailed in Table 6. The 
kappa values, K=0.73, K=0.50, and K=0.64, demonstrate that the three radiologists were in good agreement. Similar 
agreement was obtained when comparing the computer output to the radiologists' data. This demonstrates that the 
computer method is also consistent with the radiologists' interpretation of calcification morphology on mammograms. 

TABLE 4: Comparison of the computer-selected calcification 
morphology descriptors to the BI-RADS descriptors reported by 
the three radiologists. A: It was considered to be a success when 
at least one of the two computer-identified calcification 
morphology descriptors corresponded to one of the two 
calcification morphology descriptors reported by the radiologist. 
B: It was considered to be a success when the first of two 
computer-identified calcification morphology descriptors 
corresponded to one of the two calcification morphology 
descriptors reported by the radiologist. 

TABLE 3: Comparison of the computer-selected calcification 
disU-ibution descriptors to the BI-RADS descriptors reported by 
the three radiologists. 

Percent 
agreement 

K value 

Radiologist 1 74 0.44 
Radiologist 2 66 0.36 
Radiologist 3 73 0.46 

1             A    B 
Percent 

agreement 
K value Percent 

agreement 
K value 

Radiologist 1 83 0.78 58 0.45 
Radiologist 2 77 0.70 54 0.42 
Radiologist 3 57 0.44 32 0.15 

TABLE 5: Comparison of the calcification distribution descriptors 
reported by pairs of the three radiologists. 

Percent 
agreement 

K value 

Radiologist 1 / Radiologist 2 75 0.53 
Radiologist 1 / Radiologist 3 74 0.50 
Radiologist 2 / Radiologist 3 65 0.37 

TABLE 6: Comparison of the calcification morphology descriptors 
reported by pairs of the three radiologists. It was considered to be 
a success when at least one of the calcification morphology 
descriptors reported by the radiologists was the same. 

Percent 
agreement 

K value 

Radiologist 1 / Radiologist 2 79 0.73 
Radiologist 1 / Radiologist 3 60 0.50 
Radiologist 2 / Radiologist 3 72 0.64 
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4. CONCLUSION 

In this study, we propose a method to automatically select the BI-RADS descriptors of clustered microcalcifications. 
Both the calcification distribution and the calcification morphology descriptors have been analyzed. Based on our 
understanding of the BI-RADS lexicon, features have been selected and several DDAs have been trained to select the 
appropriate descriptors. Membership scores are obtained from the different LDAs and a final decision defines the 
calcification distribution descriptor and the calcification morphology descriptors for each mammogram. The results are 
compared to the descriptors reported by three radiologists. The preliminary results demonstrate that the proposed 
method is consistent with the radiologists' interpretation of both calcification distribution and morphology on 
mammograms. Further tests are underway to extract more relevant features, to integrate and describe calcification 
distribution and calcification morphology that were not present in our database and to test the robustness of our 
proposed computer scheme. In addition, we will separately analyze the benefit on the radiologists' interpretation of the 
mammograms when reading with the proposed computer-selected BI-RADS descriptors, and on the classification of 
malignant versus benign microcalcification clusters when this proposed computer-selected BI-RADS descriptors are 
included in the current CAD scheme. 
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